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Abstract

We study three classical machine learning algorithms in
the context of algorithmic fairness: adaptive boosting,
support vector machines, and logistic regression. Our
goal is to maintain the high accuracy of these learn-
ing algorithms while reducing the degree to which they
discriminate against individuals because of their mem-
bership in a protected group.

Our first contribution is a method for achieving fair-
ness by shifting the decision boundary for the protected
group. The method is based on the theory of margins
for boosting. Our method performs comparably to or
outperforms previous algorithms in the fairness litera-
ture in terms of accuracy and low discrimination, while
simultaneously allowing for a fast and transparent quan-
tification of the trade-off between bias and error.

Our second contribution addresses the shortcomings
of the bias-error trade-off studied in most of the algo-
rithmic fairness literature. We demonstrate that even
hopelessly naive modifications of a biased algorithm,
which cannot be reasonably said to be fair, can still
achieve low bias and high accuracy. To help to distin-
guish between these naive algorithms and more sensible
algorithms we propose a new measure of fairness, called
resilience to random bias (RRB). We demonstrate that
RRB distinguishes well between our naive and sensible
fairness algorithms. RRB together with bias and accu-
racy provides a more complete picture of the fairness of
an algorithm.

1 Background and Motivation

1.1 Motivation Machine learning algorithms as-
sume an increasingly large role in making decisions
across many different areas of industry, finance, and
government, from facial recognition and social network
analysis to self-driving cars to data-based approaches in
commerce, education, and policing. The decisions made
by algorithms in these domains directly affect individ-
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ual people, and not always for the better. Consequently,
there has been a growing concern that machine learning
algorithms, which are often poorly understood by those
that use them, make discriminatory decisions.

If the data used for training the algorithm is biased,
a machine learning algorithm will learn the bias and per-
petuate discriminatory decisions against groups that are
protected by law, even in the absence of “discriminatory
intent” by the designers. A typical example is an algo-
rithm serving predatory ads to protected groups. Such
issues resulted in a 2014 report from the US Executive
Office [12] which voiced concerns about discrimination
in machine learning. The primary question we study in
this paper is

How can we maintain high accuracy of a learning
algorithm while reducing discriminatory biases?

In this paper we will focus on the issue of biased training
data, which is one of the several possible causes of
discriminatory outcomes in machine learning. In this
setting, we have a protected attribute (e.g. race or
gender) which we assert should be independent from the
target attribute. For example, if the goal is to decide
creditworthiness for loans and the protected attribute
is gender, a classifier’s prediction should not correlate
with an applicant’s gender. We say that the classifier
achieves statistical parity if the protected subgroup is as
likely as the broader population to have a given label.

Of course, there might be situations where the
target label depends on legitimate factors that correlate
with the protected attribute. For example, if the
protected attribute is gender and the target label is
income, some argue that lower salaries for women can
be partly explained by the fact that on average, men
work longer hours than women. In this paper we assume
that this is not the case. The issue of “explainable
discrimination” in machine learning was studied in [8].

In our setting, since we only have biased data,
we cannot evaluate our classifiers against an unbiased
ground truth. In particular only a biased classifier
could achieve perfect accuracy; to achieve statistical
parity in general one must be willing to reduce accuracy.
Hence the natural goal is to find a classifier that



achieves statistical parity while minimizing error, or
more generally to study the trade-off between bias and
accuracy so as to make favorable trade-offs.

1.2 Contributions Our first contribution in this pa-
per is a method for optimizing this trade-off which we
call the Shifted Decision Boundary (SDB). SDB is a
generic method based on the theory of margins [2, 15],
and it can be combined with any learning algorithm that
produces a measure of confidence in its prediction (Sec-
tion 2.1). In particular we combine SDB with boosting,
support vector machines, and logistic regression, and it
performs comparably to or outperforms previous algo-
rithms in the fair learning literature. See Section 3 for
its empirical evaluation. We also give a theorem based
on the analysis in [15] bounding the loss of accuracy for
SDB under weighted majority schemes (Section 2.4).
SDB makes the assumptions on the bias explicit and
transparent, so that the trade-off can be understood
without a detailed understanding of the learning algo-
rithm itself.

Unfortunately, studying the bias-error trade-off is
an incomplete picture of the fairness of an algorithm.
The shortcomings were discussed in [3], e.g., in terms of
how an adversary could achieve statistical parity while
still targeting the protected group unfairly. We demon-
strate these shortcomings in action even in the absence
of adversarial manipulation. Among other methods, we
show that modifying a classifier by randomly flipping
certain output labels with a certain probability already
outperforms much of the prior fairness literature in both
accuracy and bias. Such a naive algorithm is obviously
unfair because the relabeling is independent of the clas-
sification task. Our second contribution is a measure of
fairness that addresses this shortcoming, which we call
resilience to random bias. We define it in Section 2.5
and demonstrate that it distinguishes well between our
naive baseline algorithms and SDB.

1.3 Existing notions of fairness The study of
fairness in machine learning is young, but there has
been a lot of disparate work studying notions of what it
means for data to be fair. Finding the “right” definition
of fairness is a major challenge; see the extensive
survey of [13] for a detailed discussion. Two prominent
definitions of fairness that have emerged are statistical
parity and k-nearest-neighbor consistency. We review
them briefly now.

Statistical parity: Let D be a distribution over a set
of labeled examples X with labels l : X → {−1, 1} and
a protected subset S ⊂ X. The bias of l with respect
to D is defined as the difference in probability of an
example in S having label 1 and the probability of an

example in SC having label 1, i.e.

B(D,S) = Pr
x∼D|SC

[l(x) = 1]− Pr
x∼D|S

[l(x) = 1].

The bias of a hypothesis h is the same quantity with
h(x) replacing l(x). If a hypothesis has low bias in
absolute value we say it achieves statistical parity. Note
that S represents the group we wish to protect from
discrimination, and the bias represents the degree to
which they have been discriminated against. The sign of
bias indicates whether S or SC is discriminated against.
A similar statistical measure called disparate impact was
introduced and studied by Friedler et al. [4] based on the
“80% rule” used in United States hiring law.

Dwork et al. [3] point out that statistical parity is
only a measure of population-wide fairness. They pro-
vide a laundry list of ways one could achieve statistical
parity while still exhibiting serious and unlawful dis-
crimination. In particular, one can achieve statistical
parity by flipping the labels of a certain number of ar-
bitrarily chosen members of the disadvantaged group,
regardless of the relation between the individuals and
the classification task. In our experiments we show this
already outperforms some of the leading algorithms in
the fairness literature.

Despite this, it is important to study the ability
for learning algorithms to achieve statistical parity. For
example, it might be reasonable to flip the labels of
the “most qualified” individuals of the disadvantaged
group who are classified negatively. Some previous
approaches assume the existence of a ranking or metric
on individuals, or try to learn this ranking from data [6,
3]. By contrast, our SDB achieves statistical parity
without the need for such a ranking.

kNN -consistency: The second notion, due to [3],
calls a classifier “individually fair” if it classifies similar
individuals similarly. They use k-nearest-neighbor to
measure the consistency of labels of similar individuals.
Note that “closeness” is defined with respect to a metric
chosen as part of the data cleaning and feature selection
process. By contrast SDB does not require a metric on
individuals.

1.4 Previous work on fair algorithms Learning
algorithms studied previously in the context of fairness
include naive Bayes [1], decision trees [7], and logistic
regression [9]. To the best of our knowledge we are the
first to study boosting and SVM in this context, and
our confidence-based analysis is new for both these and
logistic regression.

The two main approaches in the literature are mas-
saging and regularization. Massaging means changing
the biased dataset before training to remove the bias
in the hope that the learning algorithm trained on the



now unbiased data will be fair. Massaging is done in the
previous literature based on a ranking learned from the
biased data [6]. The regularization approach consists of
adding a regularizer to an optimization objective which
penalizes the classifier for discrimination [10]. While
SDB can be thought of as a post-processing regulariza-
tion, it does so in a way that makes the trade-off between
bias and accuracy transparent and easily controlled.

There are two other notable approaches in the
fairness literature. The first, introduced in [3], is a
framework for maximizing the utility of a classification
with the constraint that similar people be treated
similarly. One shortcoming of this approach is that
it relies on a metric on the data that tells us the
similarity of individuals with respect to the classification
task. Moreover, the work in [3] suggests that learning a
suitably fair similarity metric from the data is as hard
as the original problem of finding a fair classifier. Our
SDB method does not require such a metric.

The “Learning Fair Representations” method of
Zemel et al. [17] formulates the problem of fairness in
terms of intermediate representations: the goal is to
find a representation of the data which preserves as
much information as possible from the original data
while simultaneously obfuscating membership in the
protected class. Given that in this paper we seek to
make explicit the trade-off between bias and accuracy,
we will not be able to hide membership in the protected
class as Zemel et al. seeks to do. Rather, we align with
the central thesis of [3], that knowing the protected
feature is useful to promote fairness.

1.5 Margins The theory of margins has provided a
deep, foundational explanation for the generalization
properties of algorithms such as AdaBoost and soft-
margin SVMs [2, 15]. A hypothesis f : X → [−1, 1]
induces a margin for a labeled example marginf (x, y) =
y · f(x), where x ∈ X is a data point and y ∈ {−1, 1} is
the correct label for x. The sign of the margin is positive
if and only if f correctly labels x, and the magnitude
indicates how confident f is in its prediction.

As an example of the power of margins, we quote
a celebrated theorem on the generalization accuracy
of weighted majority voting schemes in PAC-learning.
Here a weighted majority vote is a function f(x) =∑N
i=1 αihi(x) for some hypotheses hi ∈ H and αi ≥

0,
∑
i αi = 1.

Theorem 1.1. (Schapire et al. [15]) Let D be a
distribution over X × {−1, 1} and S be a sample of m
examples chosen i.i.d. at random according to D. Let
H be a set of hypotheses of VC-dimension d. Then for
any δ > 0, with probability at least 1− δ every weighted

majority voting scheme satisfies the following for every
θ > 0:

Pr
D

[yf(x) ≤ 0] ≤ Pr
S

[yf(x) ≤ θ]+

O

(
1√
m

(
d log2(m/d)

θ2
+ log(1/δ)

)1/2
)

In other words, the generalization error is bounded
by the probability of a small margin on the sample. One
can go on to show AdaBoost [14], a popular algorithm
that produces a weighted voting scheme, performs well
in this respect. Recall that the output of AdaBoost
is a hypothesis which outputs the sign of a weighted
majority vote

∑
i αi, hi(x). Rather than measure the

margin we measure the signed confidence of the boosting
hypothesis on an unlabeled example x as

conf(x) =

∑T
i=1 αihi(x)∑T

i=1 αi
.

The magnitude of the confidence measures the agree-
ment of the voters in their classification of an example.

The theoretical work on margins for boosting sug-
gests that examples with small confidence are more
likely to have incorrect labels than examples with large
confidence. For example, we display in Figure 1 the
signed confidence values for all examples and incorrectly
predicted examples respectively. The incorrect exam-
ples have confidence centered around zero. One can
leverage this for fairness by flipping negative labels of
members of the protected class with a small confidence
value. This is a rough sketch of the SDB method. The
empirical results of SDB suggest that SDB achieves sta-
tistical parity with relatively little loss in accuracy. In-
deed, we state a similar guarantee to Theorem 1.1 in
Section 2.4 that solidifies this intuition.

The idea of a signed confidence generalizes nicely to
other machine learning algorithms. We study support
vector machines (SVM) which have a natural geometric
notion of margin, and logistic regression which outputs
a confidence in its prediction. For background on SVM,
logistic regression, and AdaBoost, see [16].

1.6 Interpretations of signed confidence Here
we state how signed confidence is defined for each of
the learning methods.

1.6.1 AdaBoost Boosting algorithms work by com-
bining base hypotheses, “rules of thumb” that have a
fixed edge over random guessing, into highly accurate
predictors. In each round, a boosting algorithm finds
the base hypothesis that achieves the smallest weighted
error on the sample. It then increases the weights of



1.0 0.5 0.0 0.5 1.0
0

200
400
600
800

1000
1200 Confidence Values of All Examples

1.0 0.5 0.0 0.5 1.0
0

50

100

150

200

250 Confidence Values of Mislabeled Training Examples

population
protected

Figure 1: Histogram of boosting confidences for the
Census data set. The top histogram shows the distribu-
tion of confidence values for the entire dataset, and the
bottom shows the confidence for only mislabeled exam-
ples. The vast majority of women are classified as −1,
and the incorrect classifications are closer to the deci-
sion boundary.

the incorrectly classified examples, thus forcing the base
learner to improve the classification of difficult exam-
ples. In this paper we study AdaBoost, a ubiquitous
boosting algorithm. For more on boosting, we refer the
reader to [14].

Let H be a set of base classifiers, and let (αt, ht)
T
t=1

be the weights and hypotheses output by AdaBoost
after T rounds. The signed confidence of the hypothesis

is conf(x) =
∑T
i=1 αihi(x)∑T

i=1 αi
. In all of our experiments we

boost decision stumps for T = 20 rounds.

1.6.2 SVM The soft-margin SVM of Vapnik [2] out-
puts a maximum margin hyperplane w in a high-
dimensional space implicitly defined by a kernel K, and
w can be expressed implicitly as a linear combination of
the input vectors, say w′. We define the confidence as
the distance of a point from the separating hyperplane,
i.e. conf(x) = K(w′,x). For the Census Income and
Singles datasets we use the standard Gaussian kernel,
and for the German dataset we use a linear kernel (the
datasets are described in Section 3).

1.6.3 Logistic regression The classifier output by
logistic regression has the form

h(x) = sign(φ(〈w,x〉)− 1/2)

where φ(z) = 1
1+e−z is the logistic function, and the

vector w is found by empirical risk minimization (ERM)

with the standard logistic loss `(w, (x, y)) = log(1 +
e−y〈w,x〉) and L2 regularization. Here we define the
confidence of logistic regression simply as the value
that the classifier takes before rounding: conf(x) =
φ(〈w,x〉).

2 Methods and Technical Solutions

2.1 Shifted decision boundary In this section we
define our methods. In what follows X is a labeled
dataset, l(x) are the given labels, and S ⊂ X is the
protected group. We further assume that members of S
are less likely than SC to have label 1. First we describe
our proposed method, called shifted decision boundary
(SDB), and then we describe three techniques we use
for baseline comparisons (in addition to comparing to
previous literature).

Let conf : X → [−1, 1] be a function corresponding
to a classifier h(x) = sign(conf(x)), and define the
decision boundary shift of λ for S as the classifier
hλ : X → {−1, 1}, defined as

hλ(x) =

{
1 if x ∈ S, conf(x) ≥ −λ
sign(conf(x)) otherwise.

The SDB algorithm accepts as input confidences conf
and finds the minimal error decision boundary shift for
S that achieves statistical parity. That is, given conf
and ε > 0, it produces a value λ such that hλ has
minimal error subject to achieving statistical parity up
to bias ε.

2.2 Naive baseline algorithms We define two
naive baseline methods which are intended to be both
baseline comparisons for our SDB algorithm and illus-
trations of the shortcomings of the bias-error trade-off.

Similarly to SDB, the random relabeling (RR) algo-
rithm modifies a given hypothesis h by flipping labels.
In particular, RR computes the probability p for which,
if members of S with label −1 under h are flipped by h′

to +1 randomly and independently with probability p,
the bias of h′ is zero in expectation. The classifier h′ is
then defined as the randomized classifier that flips mem-
bers of S with label −1 with probability p and otherwise
is the same as h.

Next, we define random massaging (RM). Massag-
ing strategies, introduced by [6], involve eliminating the
bias of the training data by modifying the labels of data
points, and then training a classifier on this data in the
hope that the statistical parity of the training data will
generalize to the test set as well. In our experiment,
we massage the data randomly; i.e. we flip the labels
of S from −1 to +1 independently at random with the
probability needed to achieve statistical parity in expec-



tation, as in RR.
As we have already noted, these two baseline meth-

ods perform comparably to much of the previous liter-
ature in both bias and error. This illustrates that the
semantics of why an algorithm achieves statistical par-
ity is crucial part of its evaluation. As such, these two
baselines can be useful for any analysis that measures
bias and accuracy. Moreover, they can be used to de-
termine the suitability of a new proposed measure of
fairness.

2.3 Fair weak learning Finally, we include a
method which is based on a natural idea but is empir-
ically suboptimal to SDB. Recall that boosting works
by combining weak learners into a “strong” classifier.
It is natural to ask whether boosting keeps the fairness
properties of the weak learners. Weak learners used in
practice, such as decision stumps, have very low com-
plexity, therefore it is easy to impose fairness constraints
on them. In our fair weak learning (FWL) baseline we
replace a standard boosting weak learner with one which
tries to minimize a linear combination of error and bias
and run the resulting boosting algorithm unchanged.
The weak learner we use computes the decision stump
which minimizes the sum of label error and bias of its
induced hypothesis.

2.4 Theoretical properties of SDB Because the
SDB method only flips the labels of examples with small
signed confidence, margin theory implies that it will not
increase the error too much. We formalize this precisely
below. This theorem, a direct corollary of Theorem 1.1,
provides strong theoretical justification for our SDB
method. To the best of our knowledge, SDB is the first
empirically tested method for fair learning that has any
specific guarantees for its accuracy.

Informally, the theorem says that when a majority
voting scheme is post-processed by the SDB technique,
the resulting hypothesis maintains the generalization
accuracy bounds in terms of the margin on the sample
when the shift is small (λ ≤ θ). But as the shift
grows, the error bound increases proportionally to the
fraction of the protected population that has large
enough negative margins (i.e., in [−λ,−θ]).

Theorem 2.1. Let X be finite and D,S,m,H, and d
be as in Theorem 1.1. Let T ⊂ S be the subset of the
sample in the protected class. Let δ > 0. Let err(m)
be the tail error function from Theorem 1.1. For any
A ⊂ X let Aλ,θ = {a ∈ A : −λ ≤ conf(a) ≤ −θ}.

Then with probability at least 1 − δ, every function
hλ post-processed by SDB with weighted majority vote
conf(x) and shift λ > 0 satisfies the following for every

θ > 0:

Pr
D

[yhλ(x) ≤ 0] ≤ Pr
Tλ,θ

[y · conf(x) ≥ −θ] Pr
S

[x ∈ Tλ,θ]

+ Pr
S−Tλ,θ

[y · conf(x) ≤ θ] Pr
S

[x 6∈ Tλ,θ]

+ max(err(|Tλ,θ|), err(|TCλ,θ|))

Proof. The bound follows by conditioning on the event
that hλ flips the label, noticing − conf(x) is also a
majority function, and applying Theorem 1.1 twice.

2.5 Resilience to random bias One of the biggest
challenges for designers of fair learning algorithms is
the lack of good measures of fairness. The most
popular measures are statistical measures of bias such as
statistical parity. As Dwork et al. [3] have pointed out,
statistical parity fails to capture all important aspects
of fairness. In particular, it is easy to achieve statistical
parity simply by flipping the labels of an arbitrary
set of individuals in the protected class. A real-world
example would be giving a raise to a random group of
women to eliminate the gender disparity in wages. The
root cause of this problem is that one does not have
access to reliable (unbiased) ground truth labels. We
propose to compensate for this by evaluating algorithms
on synthetic bias. In doing this we make transparent the
kind of bias a claimed “fair” algorithm protects against,
and we can accurately measure its resilience to said bias.

We introduce a new notion of fairness called re-
silience to random bias (RRB). Informally we introduce
a new, random feature which has no correlation with the
target attribute, and then we introduce bias against in-
dividuals which have a certain value for this new feature.
We call an algorithm fair if it can recover the original,
unbiased labels. For RRB in particular, the synthetic
bias is i.i.d. random against the protected group.

Certainly, in practice, bias may not be of this form
and we do not pretend that this notion captures all
forms of bias. Rather, this notion seeks to model
a comparatively mild form of bias – if an algorithm
cannot recover from this type of random bias against
a protected class then there is little reason to think
it can handle other types of bias. In other words, we
propose this as a minimally necessary condition but not
necessarily a sufficient condition for individual fairness.
Relating our RRB measure more formally to other
notions of individual fairness is left for future work.

We formally define RRB as follows. Let X be a
set of examples and D be a distribution over examples,
with l : X → {−1, 1} a target labeling function. We
first define a randomized process mapping (X,D, l) →
(X̃, D̃, l̃). Let X̃ = X × {−1, 1} and D̃ be the
distribution on X̃ which is independently D on the
X coordinate and uniform on the {−1, 1} coordinate.



Denote by X̃0 = {(x, b) ∈ X̃ | b = 0} and call this
the protected set. Finally, l̃(x, b) is fixed to either l(x)
or −l(x) independently at random for each (x, b) ∈ X̃
according to the following:

Pr[l̃(x, b) = l(x)] =

{
1 if b = 1 or l(x) = −1

1− η if b = 0 and l(x) = 1
.

In other words, the positive labels of a randomly
chosen protected subgroup are flipped to negative inde-
pendently at random with probability η. We emphasize
that the process mapping l 7→ l̃ is randomized, but the
map l̃(x, b) itself is fixed and deterministic. So an al-
gorithm which queries labels from l̃ is given consistent
answers. Now we define the resilience to random bias
as follows:

Definition 1. Let (X,D, l), (X̃, D̃, l̃) be as above. Let
h = A(D̃, l̃) be the output classifier of a learning
algorithm A when given biased data as input. The
resilience to random bias (RRB) of A with respect to
(X,D, l) and discrimination rate 0 ≤ η < 1/2, denoted
RRBη(A), is

RRBη(A) = Pr
D̃

[h(x, b) = l(x) | b = 0, l(x) = 1]

Similarly to calculating statistical parity, RRB is
estimated on a fixed dataset by simulating the process
described above and outputing an empirical average.

3 Empirical Evaluation

We measure our methods on label error, statistical
parity, and RRB with η = 0.2. In all of our experiments
we split the datasets randomly into training, test, and
model-selection subsets, and we output the average of
10 experiments.1

3.1 Datasets The Census Income dataset [11], ex-
tracted from the 1994 Census database, contains de-
mographic information about 48842 American adults.
The prediction task is to determine whether a person
earns over $50K a year. The dataset contains 16, 192
females (33%) and 32, 650 males. Note 30.38% of men
and 10.93% of women reported earnings of more than
$50K, therefore the bias of the dataset is 19.45%.

The German credit dataset [11] contains financial
information about 1000 individuals who are classified
into groups of good and bad credit risk. The “good”
credit group contains 699 individuals. Following the
work of [6], we consider age as the protected attribute
with a cut-off at 25. Only 59% of the younger people are

1The code is available for reproducibility at https://github.

com/j2kun/fkl-SDM16

considered good credit risk, whereas of the 25 or older
group, 72% are creditworthy, making the bias 13%.

In the Singles dataset, extracted from the marketing
dataset of [5] by taking all respondents who identified as
“single,” the goal is to predict whether annual income
of a household is greater than $25K from 13 other
demographic attributes. The protected attribute is
gender. The dataset contains 3, 653 data points, 1, 756
(48%) of which belong to the protected group. 34% of
the dataset has a positive label. The bias is 9.8%.

Method Census German Singles
SVM 0.2702 0.6756 0.2424

SVM (RR) 0.2821 0.7827 0.2588
SVM (RM) 0.2545 0.6232 0.2552
SVM (SDB) 0.3172 0.8619 0.3064

LR 0.4647 0.3070 0.1971
LR (RR) 0.4696 0.8564 0.3213
LR (RM) 0.4282 0.6741 0.2117
LR (SDB) 0.5402 0.8687 0.8596

AB 0.4372 0.6774 0.2864
AB (RR) 0.4661 0.8629 0.3996
AB (RM) 0.4410 0.6965 0.3325
AB (SDB) 0.5461 0.8596 0.4027
AB (FWL) 0.5174 0.6879 0.2971

Table 1: The RRB numbers for each of our methods
and baselines. In each column and section the largest
values are shown in bold, and they are almost always
SDB.

3.2 Results and analysis In this section we state
our experimental results. They are summarized in
Figure 2 for the Census Income, German, and Sin-
gles datasets, and the full set of numbers are in Ta-
bles 2, 3, and 4 respectively. For comparison, we
also included the numbers for the Learning Fair Rep-
resentations (LFR) method of [17] for the Census In-
come dataset, for Classification with No Discrimination
(CND) method of [6], and for the Discrimination Aware
Decision Tree (DADT) technique of [7] (specifically we
use the numbers for the “IGC+IGS Relab” method).
In [17] the authors implemented three other learning
algorithms, these are unregularized logistic regression,
Fair Naive-Bayes [6], and Regularized Logistic Regres-
sion [10]. These methods all had errors above 20% on
the Census dataset and so we omit them for brevity.
In [7] the authors implemented variations on the deci-
sion tree learning scheme, and the one we include has
the highest accuracy, though they are all closely com-
parable. We reported all biases as unsigned. We were
unable to access implementations of the prior authors’

https://github.com/j2kun/fkl-SDM16
https://github.com/j2kun/fkl-SDM16
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Figure 2: A summary of our experimental results for our three datasets, from left to right: Census Income,
German, Singles. Labels show which learning algorithm is used and the colors give which method for achieving
fairness was used. The parameters of each algorithm were chosen to minimize bias. The size of a point is
proportional to the RRB of the learner (only for those algorithms for which we have the RRB numbers), where
larger dots mean there is a larger probability of correcting a label.

algorithms, so we were not able to reproduce their re-
sults or measure their algorithms with respect to RRB.

To investigate the trade-offs made by our SDB
method more closely, Figures 3, 4, and 5 show the rate
at which error increases as bias goes to zero. In many
cases, a substantial reduction in bias can be achieved
before there is any significant drop-off in accuracy.

For the Census Income dataset, the three SDB tech-
niques outperform the baselines and outperform all the
prior literature except for DADT. Both SDB algorithms
achieve statistical parity with about 18% error. More-
over, these two SDB algorithms have the highest RRB,
while SVM appears to overfit the random bias intro-
duced by RRB more than the other algorithms. While
DADT appears to achieve lower label error and compa-
rable bias, we note that the standard deviation of the
bias reported in [7] is 0.015 while for SDB (on the Cen-
sus Income dataset) the standard deviations are at least
one order of magnitude smaller.

The singles dataset shows a similar pattern, with
SDB combined with logistic regression outperforming
all other baselines. Note that in the instances where
the baselines perform comparably to SDB, SDB tends
to have a much larger resilience to random bias.

The German dataset is more puzzling. While two
of the SDB techniques outperform the prior literature
by a moderate margin, they do not outperform random
relabeling or random massaging by a significant margin
(and these baselines already outperform CND). Another
curious observation is that label error stays constant as
the decision boundary is shifted, as Figure 4 shows.

Note again the difference in SVM kernels between
the datasets. The Gaussian kernel performs well for the
Census Income and Singles dataset. However, in the
case of the German dataset, which is the smallest of the

three, with the Gaussian kernel every point becomes
a support vector. This is not only a clear sign of
overfitting but it also makes SDB useless since the model
gives the same confidence for almost every data point.

These facts seem to be evidence that the German
dataset (which has only about a thousand records) is too
small to draw a significant conclusion. We nevertheless
include it here for completeness and to show comparison
with the previous literature.

Fair weak learning (FWL) does empirically reduce
bias but does not achieve statistical parity in two of the
three data sets. FWL performs worse on either label
error or bias on each of the data sets and the trade-off
between label error and bias cannot easily be controlled.
It also does not seem easy to control this trade-off using
either random massaging and random relabeling.

One notable advantage of SDB is that the trade-
off between label error and bias can be controlled after
training. To decide how much bias and error we want
to allow, we do not have to pick a hyper-parameter
before training the algorithm, unlike for most other fair
learning methods. This means that the computational
cost of choosing the best point on the trade-off curve is
very low, and the trade-off is transparent.

The results also highlight the usefulness of RRB
as a measure of fairness. The RRB values across all
datasets and algorithms we studied are in Table 1. In
cases where random relabeling or random massaging
performs comparably to SDB, the RRB measure is
able to distinguish them, giving a lower score to the
less reasonable baselines and a higher score to SDB.
This suggests that the performance of fair learning
algorithms should not be evaluated solely by their
accuracy and bias.



4 Significance and Impact

In this paper, we introduced a general method for bal-
ancing discrimination and label error. This method,
which we call shifted decision boundary (SDB), is appli-
cable to any learning algorithm which has an efficiently
computable measure of confidence. We studied three
such algorithms – AdaBoost, support vector machines,
and linear regression – compared our methods to other
methods proposed in the earlier literature and our own
baselines, and empirically evaluated our methods’ per-
formances in terms of their resilience to random bias.

Our method, in addition to outperforming much
of the previous literature, has several other desirable
properties. Unlike most other fair learning algorithms,
SDB applied to AdaBoost has theoretical bounds on
generalization error. Also, since the margin shift can be
specified after the original learner has been trained on
the data, a practitioner can easily evaluate the trade-off
between error and bias and choose the most desirable
point on the trade-off curve. This makes SDB a fast
and transparent way to study the fairness properties of
an algorithm.

Our resilience to random bias (RRB) measure is a
novel approach to evaluate the fairness of a learning
algorithm. Although i.i.d. random bias is a simplified
model of real-world discrimination, we posit that any
algorithm which can be considered fair must be fair
with respect to RRB. Moreover, RRB generalizes to an
arbitrary distribution over the input data, and one could
adapt it to well-studied models of bias in social science.
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Figure 3: Trade-off between (signed) bias and error for SDB on the Census Income data. The horizontal axis is
the threshold used for SDB.
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Figure 4: Trade-off between (signed) bias and error for SDB on the German data. The horizontal axis is the
threshold used for SDB.
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Figure 5: Trade-off between (signed) bias and error for SDB on the Singles data. The horizontal axis is the
threshold used for SDB.



SVM SVM (RR) SVM (SDB) SVM (RM) LFR [17]
label error 0.1471 (5.7e-17) 0.2007 (0.002) 0.1869 (0.004) 0.1740 (0.003) 0.2299

bias 0.1689 (5.7e-17) 0.0050 (0.003) 0.0036 (0.009) 0.0795 (0.010) 0.0020
RRB 0.2702 (0.014) 0.2926 (0.004) 0.3172 (0.025) 0.2545 (0.007) n/a

LR LR (RR) LR (SDB) LR (RM) DADT [7]
label error 0.1478 (4.8e-04) 0.2077 (0.004) 0.1802 (0.002) 0.1810 (0.003) 0.1600

bias 0.1968 (0.003) 0.0044 (0.006) 0.0060 (0.011) 0.0262 (0.008) 0.0090 (0.015)
RRB 0.4647 (0.013) 0.4696 (0.009) 0.5402 (0.011) 0.4282 (0.019) n/a

AdaBoost AB (RR) AB (SDB) AB (RM) AB (FWL)
label error 0.1529 (0.002) 0.2078 (0.004) 0.1822 (0.005) 0.1864 (0.004) 0.1860 (0.004)

bias 0.1856 (0.012) 0.0091 (0.006) 0.0013 (0.007) 0.0381 (0.013) 0.0682 (0.004)
RRB 0.4372 (0.032) 0.4661 (0.019) 0.5461 (0.015) 0.4410 (0.013) 0.4321 (0.016)

Table 2: A summary of our experimental results for the Census Income data for relabeling, massaging, and the
fair weak learner. The threshold for SDB was chosen to achieve perfect statistical parity on the training data.
Standard deviations are reported in parentheses when known.

SVM SVM (RR) SVM (SDB) SVM (RM) CND [6]
label error 0.2823 (0) 0.2778 (0.025) 0.2979 (0.022) 0.3000 (0.017) 0.2757

bias 0.0886 (4.2e-17) 0.0732 (0.066) 0.0266 (0.085) 0.0445 (0.028) 0.0327
RRB 0.6756 (0.081) 0.7827 (0.054) 0.8619 (0.041) 0.6232 (0.070) n/a

LR LR (RR) LR (SDB) LR (RM)
label error 0.2541 (0.005) 0.2656 (0.020) 0.2685 (0.021) 0.2625 (0.011)

bias 0.1383 (0.014) 0.0095 (0.064) 0.0142 (0.219) 0.0202 (0.566)
RRB 0.3070 (0.067) 0.8564 (0.045) 0.8687 (0.042) 0.6741 (0.045)

AdaBoost AB (RR) AB (SDB) AB (RM) AB (FWL)
label error 0.2602 (0.009) 0.2429 (0.010) 0.2745 (0.010) 0.2637 (0.019) 0.2859 (0.016)

bias 0.2617 (0.272) 0.0376 (0.044) 0.0034 (0.064) 0.0391 (0.023) 0.0093 (0.035)
RRB 0.6774 (0.219) 0.8629 (0.051) 0.8596 (0.067) 0.6965 (0.037) 0.6879 (0.042)

Table 3: A summary of our experimental results for the German data for relabeling, massaging, and the fair weak
learner. The threshold for SDB was chosen to achieve perfect statistical parity on the training data. On this
dataset SVM was run with a linear kernel. Standard deviations are reported in parentheses when known.

SVM SVM (RR) SVM (SDB) SVM (RM)
label error 0.2718 (5.7e-17) 0.2793 (0.009) 0.2716 (0.013) 0.2876 (0.015)

bias 0.0550 (1.4e-17) 0.1460 (0.017) 0.0106 (0.035) 0.0260 (0.047)
RRB 0.2424 (0.045) 0.2588 (0.009) 0.3064 (0.042) 0.2552 (0.032)

LR LR (RR) LR (SDB) LR (RM)
label error 0.2742 (1.14e-16) 0.3130 (0.011) 0.2745 (0.010) 0.2966 (0.008)

bias 0.1468 (9.99e-18) 0.3025 (0.040) 0.0034 (0.640) 0.0732 (0.024)
RRB 0.1971 (0.036) 0.3213 (0.035) 0.8596 (0.067) 0.2117 (0.036)

AdaBoost AB (RR) AB (SDB) AB (RM) AB (FWL)
label error 0.2690 (0.004) 0.3088 (0.009) 0.2990 (0.008) 0.2860 (0.019) 0.2687 (0.008)

bias 0.0966 (0.020) 0.2123 (0.013) 0.0140 (0.017) 0.0180 (0.037) 0.0463 (0.016)
RRB 0.2864 (0.057) 0.3996 (0.105) 0.4027 (0.061) 0.3325 (0.060) 0.2971 (0.028)

Table 4: A summary of our experimental results for the Singles data for relabeling, massaging, and the fair weak
learner. The threshold for SDB was chosen to achieve perfect statistical parity on the training data. Standard
deviations are reported in parentheses when known.
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