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Abstract

We study the classical AdaBoost algorithm
in the context of fairness. We use the Cen-
sus Income Dataset (Lichman, 2013) as a
case study. We empirically evaluate the bias
and error of four variants of AdaBoost rela-
tive to an unmodified AdaBoost baseline, and
study the trade-offs between reducing bias
and maintaining low error. We further define
a new notion of fairness and measure it for all
of our methods. Our proposed method, mod-
ifying the hypothesis output by AdaBoost by
shifting the decision boundary for the pro-
tected group, outperforms the state of the art
for the census dataset.

Although there are several papers on “fair” versions
of learning algorithms such as naive Bayes, decision
tree learning or logistic regression, boosting, which is
one of the most successful and most widely used ma-
chine learning algorithms, has not been studied in the
context of fair learning before. In addition to its popu-
larity, boosting is an interesting framework in which to
study fairness because notions such as a weak learner
and the boosting margin have natural interpretations
for fairness. We rigorously define these notions in Sec-
tion 2 and analyze them in Section 3.

Following previous literature, we assume that the
training data is biased against data points with a given
feature value but we do not have access to the unbiased
ground truth. We want to learn a classifier which has
minimal error (as evaluated on the biased data) among
all classifiers that achieve statistical parity. Dwork
et al. (2012) point out that bias represents a notion
of group fairness rather than individual fairness, and
that it is still possible to discriminate against individ-
uals even when achieving statistical parity. Thus, in

addition to learning a classifier that has both low bias
and error, we want a classifier that performs well on a
measure of individual fairness. In this paper, we intro-
duce a notion of fairness that captures how resistant a
classifier is to bias generated independently at random
against data points wtih a given feature value.

The Census Income Data Set (Lichman, 2013) is a
widely used data set for machine learning research in
which the learner’s goal is to predict whether an indi-
vidual’s income exceeds $50k per year based on census
data such as age, education, gender, and marital sta-
tus. In particular, when considering gender as a pro-
tected attribute, the dataset exhibits high bias. We
use this data set as a case study to understand the
fairness properties of the AdaBoost algorithm of Fre-
und & Schapire (1997). We provide information about
the Census data set in Section 1.

A primary advantage to using boosting is that boost-
ing has a natural notion of confidence which we can
take advantage of to try to decrease bias while keep-
ing error low. Our main empirical finding is that after
boosting is performed to produce a hypothesis h, flip-
ping the output label of h according to the boosting
signed confidence of the protected group outperforms
the state of the art on the Census dataset both in
terms of bias and label error. We compare this to data
massaging (introduced by Kamiran & Calders (2009)),
replacing a standard weak learner with a “fair” weak
learner, and i.i.d. random relabeling. Finally, in Sec-
tion 4 we interpret and discuss our results.

1. Background

1.1. Notions of fairness

The study of fairness in machine learning is still young,
and to the best of our knowledge we are the first to
study the fairness properties of boosting. There are
many approaches to analyze discrimination in data.
For an extensive survey, see (Romei & Ruggieri, 2014).
There are two prominent recent definitions of the fair-
ness of a learning algorithm that have been studied
in the literature. The first is discrimination or bias,
which for a distribution D over a set of labeled ex-
amples X with label l : X → {−1, 1} and a protected
subset S ⊂ X is defined as the difference in probability
of an example in S having label 1 and the probability
of an example in SC having label 1, i.e.

B(X,D, S) = Pr
x∼D|SC

[l(x) = 1]− Pr
x∼D|S

[l(x) = 1].

Similarly the bias of a hypothesis h is the same quan-
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tity with h(x) replacing l(x). If a hypothesis has low
bias in absolute value we say it achieves statistical par-
ity. S represents the group we wish to protect from
discrimination, and the bias represents the degree to
which they have been discriminated against. The sign
of bias indicates whether S or SC is discriminated
against. In particular, in this paper bias favoring men
will have positive, and bias favoring women will have
negative sign. Dwork et al. (2012) point out that while
bias is undesirable, it does not account for all possible
forms of unfairness — it is a measure of group fairness
rather than individual fairness.

The second notion, due to Dwork et al. (2012), mea-
sures individual fairness and requires a metric on the
underlying set X. They call a learning algorithm “in-
dividually fair” if the output of the learning algorithm
is similar for individuals which are close in X.

In this light, we define a new notion of fairness that
departs from previous literature in that it does not
require a metric on the underlying space. Rather, it
makes the assumption that the process generating the
bias is i.i.d. random, and measures the ability for an
algorithm to recover the true labels from the biased
dataset. We posit that any algorithm which is con-
sidered “fair” should recover from i.i.d. random bias
against a protected class, as this is a special case of
more general rule-based discrimination models. We
acknowledge that this model may not accurately re-
flect the bias in the census data set, but our focus is
on the general fairness properties of boosting.

1.2. AdaBoost

Boosting algorithms work by combining base hypothe-
ses, “rules of thumb” that are barely more accurate
than random guessing, into highly accurate predictors.
On each round, a boosting algorithm will change the
weights of the data points and find the base hypothesis
that achieves the smallest weighted error on the sam-
ple. It always increases the weights of the incorrectly
classified examples, thus forcing the base learner to
improve the classification of the examples that are the
hardest to classify correctly. In this paper, we focus
on AdaBoost, the most ubiquitous boosting algorithm.
We omit the description of the algorithm; for an intro-
duction to boosting we refer the reader to Schapire &
Freund (2012). In all of our experiments we boost de-
cision stumps for T = 20 rounds (after which accuracy
does not significantly improve).

Given hypotheses hi with weights αi computed by
AdaBoost, the margin of a labeled data point (x, y)

is

margin(x) = y

∑
i αihi(x)∑

i αi

where the αi’s are the weights of the base hypothe-
ses, the hi’s, in their linear combination defined by
AdaBoost. We define the similar signed confidence of
AdaBoost for an unlabeled point x,

conf(x) =

∑
i αihi(x)∑

i αi
.

The absolute value of the two quantities is the same,
and it measures the confidence of AdaBoost in its clas-
sification for that particular example. The difference
between the two is that whereas the sign of the margin
indicates whether the classification is correct, the sign
of the confidence tells us the classification itself. Also,
the signed confidence can be computed without access
to the correct label.

It is well known that the training error of AdaBoost
decreases exponentially in the number of rounds, and
Schapire et al. (Schapire et al., 1998) prove that the
generalization error of AdaBoost can be bounded in
terms of the empirical probability of observing a small
value of margin(x) on the training set. This suggests
that examples with small confidence are more likely
to be incorrect than examples with large margins. In
particular, one might hope that one could take ad-
vantage of this for fairness by flipping negative labels
of members of the protected class with a small confi-
dence. Indeed, is the strategy we analyze in the rest
of this paper.

1.3. Baseline statistics about the Census
dataset

The Census Income dataset, extracted from the 1994
Census database, contains demographic information
about 48842 American adults. The prediction task is
to determine whether a person earns over $50K a year.
16192 of the people in the dataset are female, 32650
are male. 30.38% of men and 10.93% of women re-
ported earnings of more than $50K, therefore the bias
of the dataset is 19.45%.

We should also note that since 76% of the data
points have negative labels, the constant −1 classifier
achieves 76% accuracy and perfect statistical parity.
The reader might find papers in the small fair ma-
chine learning literature where the proposed learning
algorithms have performance falling below or barely
surpassing this trivial baseline.

AdaBoost achieves an error of 15% after 20 rounds of
boosting. The bias of the classifier output by vanilla
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Figure 1. Histogram of boosting confidences for the Census
data set. The vast majority of women are classified as -1,
and the incorrect classifications are closer to the decision
boundary.

AdaBoost is 18%. We note that simply removing
the protected feature from the data does not reduce
bias at all in this case since the classifier output by
vanilla AdaBoost trained for 20 rounds on the full data
doesn’t explicitly use gender.

2. Methods

We define our methods. In what follows X is a la-
beled dataset, l(x) are the ground truth labels, and
S ⊂ X is the protected group. We further assume
that members of S are less likely than SC to have la-
bel 1, which is true of the Census dataset when S is
the women, for example. First we describe three rela-
beling algorithms. A relabeling algorithm, when given
a hypothesis h and a labeled data set X, l, produces a
new hypothesis h′ that uses h as a black box and flips
the output of h according to some rule.

The random relabeling (RR) algorithm computes the
probability p for which, if members of S with label −1
under h are flipped by h′ to +1, the bias of h′ is zero in
expectation. h′ is then the randomized classifier that
flips members of S with label −1 with probability p
and otherwise is the same as h.

The shifted decision boundary (SDB) algorithm com-
putes the value θ such that bias is minimized by shift-
ing the minimum required signed confidence for ex-
amples from S from zero to θ. That is, x ∈ S then
h′(x) = 1 iff conf(x) >= θ, and otherwise h′(x) =
sign(conf(x)) as usual. For the adult dataset θ < 0.

Next, we define random massaging (RM). Massaging

strategies, introduced by Kamiran & Calders (2009),
involve eliminating the bias of the training data by
modifying the labels of data points, and then training
a classifier on this data in the hope that the statistical
parity of the training data will generalize to the test
set as well. In our experiment, we massage the data
randomly; i.e. we flip the labels of S from −1 to +1
independently at random to achieve statistical parity
in expectation.

Finally, in fair weak learning (FWL) we replace a stan-
dard boosting weak learner with one which tries to
minimize a linear combination of error and bias and
run the resulting boosting algorithm unchanged. The
weak learner we used computed the decision stump
which minimizes the sum of label error and bias of its
induced hypothesis.

To measure fairness, we test how these algorithms are
resistant to i.i.d. random noise that introduces bias
against a random subset of the individuals. This is
formalized as follows:

Definition 1. We define the random bias individual
fairness (RBIF) of a learning algorithm A on a labeled
dataset X, l as follows. Introduce a new uniformly ran-
dom binary feature z on elements of X. Flip the labels
of examples x that have z = 0 independently with prob-
ability p to −1 to get a new dataset X ′, l′. Run A on
X ′, l′ and let h be the resulting hypothesis. The random
bias individual fairness of A is the expected fraction of
flipped examples x ∈ X ′ for which h(x) = l(x).

In our experiments we set p = 0.2. RBIF can be
thought of as the following experiment: A learning
algorithm is given a dataset in which bias has been
generated at random. That is, we change the labels of
a few individuals based on a feature which is blatantly
random with respect to the classification task. For ex-
ample, we purposefully flip a few labels in the data
set of individuals who prefer chocolate ice cream over
vanilla ice cream. The goal of an algorithm is to then
recover the ground truth labels in the original dataset,
recovering from the egregious bias against chocolate
ice cream lovers. This models the ability of the algo-
rithm to recover from bias against a few individuals.

This definition naturally generalizes to an arbitrary
distribution over examples, but the analysis of such a
definition is beyond the scope of this short paper.

3. Results

In this section we state our experimental results. They
are summarized in Table 1. We also included the num-
bers for the Learning Fair Representations method
of Zemel et al. (2013). In that paper, the authors
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Figure 2. Trade-off between (signed) bias and error for
SDB. The horizontal axis is the threshold used for SDB.

implemented three other learning algorithms, these
are unregularized logistic regression, Fair Naive-Bayes
(Kamiran & Calders, 2009), and Regularized Logis-
tic Regression (Kamishima et al., 2011). These meth-
ods all had errors above 20%; thus we see that our
confidence-based relabeling methods outperform the
state of the art. To investigate the trade-offs made by
these relabeling methods more closely, Figure 2 shows
the rate at which error increases as bias goes to zero.

4. Discussion

Higher confidence requirement (SDB) performs
equally to or outperforms every proposed method on
all measures of bias and error, including the previous
state of the art for the census dataset. Indeed, there is
significant theoretical justification that shifting the de-
cision boundary for the protected group achieves rela-
tively high levels of fairness. While it is always possible
to shift the decision boundary until statistical parity is
achieved, the risk is that some of the data points with
changed labels are now labeled incorrectly, increasing
error. For example, when the data points that are re-
labeled are chosen randomly, as in RR, each is now
likely to be misclassified, resulting in an additional 5
percent error as seen in Table 1. To decrease error,
we want to find the data points whose labels boost-
ing was the most unsure of since these are more likely
to be classified incorrectly by boosting. This means
we should choose the data points to relabel with the
smallest confidence, as in SDB. Figure 1 shows that
the distribution of margins for women is noticeably
shifted when compared to the whole population, giv-
ing empirical evidence that this approach is sensible.

Of course, how data points with small confidence are
relabeled does matter. If it is done symmetrically so
that both points labeled −1 and 1 are flipped, then
it takes a larger threshold to achieve statistical parity
when compared to SDB, which only flips labels from
−1 to 1. This means fewer points need to be flipped,
which in turn decreases error when compared to a sym-
metric version. It outperforms the baseline RR, where
confidence is not considered, showing that the points
with small confidence (in absolute value) are indeed
less likely to be labeled correctly than points with large
confidence.

Replacing a standard weak learner by a weak learner
that tries to minimize a combination of error and bias
(FWL) does empirically reduce bias, but does not
quite achieve statistical parity. Moreover, the label
error of FWL is not better than that of SDB, and the
trade-off between label error and bias cannot easily be
controlled. The same is true for random massaging
(RM).

A natural baseline for RBIF is 0.5, since a hypothesis
chosen uniformly at random will flip back half of the
points that were flipped to −1. Unmodified AdaBoost
encodes the bias introduced, performing worse than
0.5. The question is whether we can recover from this
randomly introduced bias, while still achieving low la-
bel error and low overall bias. Under RR, RBIF in-
creases marginally, as it randomly flips labels back to
a label of 1, a few of which were the points randomly
biased against. SDB performs better than RR, indicat-
ing that the points that were randomly biased against
have small confidence under boosting.

A further advantage of SDB is that the trade-off be-
tween label error and bias can be controlled after train-
ing. To decide how much bias and error we want to
allow, we do not have to fix the value of a hyperpa-
rameter before training the algorithm, unlike for most
other fair learning methods. This means that the com-
putational cost of choosing the best point on the trade-
off curve is very low.

While these results are preliminary, they show the ad-
vantages of fair boosting: the confidence can be used
to find a superior classifier. We also give preliminary
results that suggest the usefulness of measuring an al-
gorithm’s resistance to random bias.
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AdaBoost RR SDB RM FWL LFR (Zemel et al., 2013)
label error 0.1529 0.2073 0.1828 0.1888 0.1820 0.2299

bias 0.1856 -0.0025 -0.0036 -0.0283 0.0691 0.0020
RBIF 0.4372 0.4645 0.5340 0.4210 0.5174 n/a

Table 1. A summary of our experimental results for relabeling, massaging, and the fair weak learner. The threshold for
SDB was chosen to achieve perfect statistical parity on the training data. For all methods the variance of the results have
order 10−4 or smaller, with RBIF having a slightly larger variance than bias and label error.
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