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ABSTRACT
Recent work has documented instances of unfairness in deployed
machine learning models, and significant researcher effort has been
dedicated to creating algorithms that intrinsically consider fairness.
In this work, we highlight another source of unfairness: market
forces that drive differential investment in the data pipeline for dif-
fering groups. We develop a high-level model to study this question.
First, we show that our model predicts unfairness in a monopoly
setting. Then, we show that under all but the most extreme mod-
els, competition does not eliminate this tendency, and may even
exacerbate it. Finally, we consider two avenues for regulating a
machine-learning driven monopolist - relative error inequality and
absolute error-bounds - and quantify the price of fairness (and who
pays it). These models imply that mitigating fairness concerns may
require policy-driven solutions, not only technological ones.

CCS CONCEPTS
• Theory of computation→Market equilibria;Machine learn-
ing theory; Sample complexity and generalization bounds; Quality of
equilibria; • Applied computing→ Economics.
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1 INTRODUCTION
As machine learning has become more integrated into products,
markets, and decision-making throughout society, researchers, prac-
titioners, and activists have identified many instances of unfairness
in predictions or decisions made by machine-learned models (or by
humans influenced by said models). A large and developing body
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of work, which we briefly survey in Section 2, has empirically docu-
mented unfairness in practical machine learning settings, identified
many theoretical sources and mechanisms of unfairness, and con-
structed innovative fairness-aware algorithms. Researchers have
developed many innovative technical solutions to these problems,
yet the issue in practice remains far from solved. This paper high-
lights a simple and important point: while technical solutions to
unfairness are certainly important, mitigating unfairness in practice
may require tackling economic incentives promoting unfairness.

Most of the existing literature assumes that a fixed dataset, pos-
sibly biased, arrives in the hands of a data scientist, and solutions
often revolve around clever ways to mitigate this bias. In practice,
however, economic incentives may create disparities well before
the data scientist enters the picture. Consider, for example, the task
of speech recognition: producing accurate models may require a
large amount of data, and data from speakers with accented or
rarer dialects may be more costly to collect. If the market size of a
minority group is small relative to the costs a firm would expend
in developing accurate speech recognition software, it is likely that
the group will be served with lower quality products.

In this paper, we model the unfairness that arises when data-
driven, profit-maximizing firms choose to differentially invest in
data collection across groups, creating unequal error rates. In order
to focus on this specific source of unfairness, we use a simple
framework that elides the many other sources of bias that can seep
into the machine learning pipeline. For instance, we assume that
firms have unlimited budgets to purchase data at a cost from group-
specific data sources of potentially infinite quantity. We also assume
that both firms and users benefit from more accurate models, so
that incentives are aligned. Furthermore, we assume that firms must
build separate models for each group, to avoid unfairness that may
come from fitting to the majority.

In order to construct our models, we borrow from the tools of
learning theory and microeconomics to build simple, stylized mod-
els with crisp predictions of quantifiable unfairness. We assume
each profit-maximizing firm faces a known demand curve as a func-
tion of the worst-case error rates for each group. Standard results
from learning theory allow us to model worst-case error rates as
a function of the amount of data the firm buys. We investigate
three models of demand: linear demand, demand proportional to
error rates, and (approximately) rational demand. For the precise
description of our models and these assumptions, see Section 3.

We show in Section 4 that a profit-maximizing monopolist will
choose to serve minorities (as defined by their market power) with
lower quality models. Assuming linear demand, an oft-used bench-
mark in the economics literature, we quantify the difference in
relative model quality between groups as a function of their market
size, elasticity, and cost of data.
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We then consider two classical remedies to the ills of monop-
olies: competition and regulation. Under two natural models of
competition – multilinear demand (Section 5.1) and proportional
demand (Section 5.2) – introducing competition does not mitigate
inequality, and proportional demand even exacerbates it. Only a
model in which all consumers choose the firm with (even infinitesi-
mally) smaller error until firms reach sufficient accuracy suggests
that competition will mitigate inequality (Section 5.3); to do so,
however, this model assumes a stringent notion of rationality that
may not be reflective of consumer behavior in the real world.

Given that our most plausible models suggest that competition
does improve the situation, we askwhether regulation could be used
to mitigate error inequality by design. In particular, in Section 6
we examine two simple kinds of constraints: a ‘relative equality’
constraint where error rates across groups must be multiplicatively
close to each other, and an ‘absolute equality’ constraint where
error rates across all groups must be sufficiently small, but may
be far apart from each other. We then formally quantify the costs
to profits (and when relevant, to the majority group’s error rate)
as a function of the threshold chosen. Finally, we conclude with
takeaways, limitations, and directions for future work in Section 7.

2 RELATEDWORK
Motivation for our work comes from the many documented in-
stances of disparity in learned model performance between groups.
The existing literature has demonstrated troubling disparities in a
number of domains, including incentive-aligned domains (where
both the firms and users receive benefit frommore accurate models)
that are the focus of this work. Wilson et al. [34] studies the per-
formance of state-of-the-art object recognition systems, intended
for applications like autonomous vehicles, and find that systems
fail to recognize darker-skinned persons at much higher rates than
lighter ones. Sweeney shows that search engine queries of black-
associated names generated about four times the likelihood of ads
for arrest records [30]. Blodgett and O’Connor show that on both
complicated tasks like parsing and simple tasks like language identi-
fication, texts from speakers of African American English see vastly
higher error rates [8]. Buolamwini and Gebru show that commer-
cial facial recognition software systems misclassify race and gender
among dark-skinned females at orders of magnitude higher rates
than light-skinned males [9]. Mehrotra et al. [26] and Ekstrand et
al. [13] identify differing satisfaction levels by age and gender in
recommendation systems. The list goes on.

Researchers have engaged in many empirical and theoretical in-
vestigations to understand why these instances of unfairness occur,
with the hope of developing solutions to mitigate them. Much of
this work focuses on the learning algorithm itself as the source
of unfairness, and attempts to incorporate fairness notions into
the algorithm [21]; see e.g. Verma and Rubin [33] for a survey of
fairness definitions. Training data has also been identified as source
of unfairness; for example, Chen et al. identify sample size differ-
ences as a crucial source of unfairness, and decomposes induced
unfairness into bias, variance, and noise [10]. Various feedback
loops stemming from historical bias have also been identified as
sources of unfairness [14, 15, 24]. There are a few others, including
selection bias [20], using the wrong metric [27], or using a single

model across multiple underlying data generating processes [22].
However, to the best of our knowledge, market forces in data in-
vestment have seen little attention as a source of unfairness. See
the survey of Cowgill and Tucker [11] for an in-depth survey of
perspectives on the sources of unfairness from computer science
and economics.

Our models are built on insights from two extensive, and his-
torically separate, literatures: the formalization of learning from
data embodied in computational and statistical learning theory,
and models of strategic interactions from the theory of industrial
organization (see e.g. Tirole [31]). From learning theory, we apply
fundamental bounds on sample complexity derived from the Proba-
bly Approximately Correct (PAC) framework (see e.g. Kearns and
Vazirani [23]) to relate firms’ costs to worst-case error rates; from
industrial organization, we modify widely used models of demand
(such as linear demand, multilinear models of imperfect substitutes
[6], the Tullock contest [32], and Bertrand competition [29]) to link
firms’ choices to consumer behavior.

Recently, these two fields have drawn closer, as both computer
scientists and economists have begun to model markets for infor-
mation and data. For example, Aridor et al. [1] and Mansour et
al. [25] consider the exploration-exploitation tradeoffs faced by
firms competing to win users in a bandits setting, while Ben-Porat
and Tennenholtz formalize competition in the prediction space that
can lead to models very different than those produced by empirical
risk minimization algorithms [3, 4]. To the best of our knowledge,
however, this is the first work to apply learning theory and indus-
trial organization to explore differing incentives in the context of
fairness. The work of Dong et al. [12] is the closest in form to ours,
and uses a similar high-level abstraction of learning theory, as well
as a proportional-error split in market share, but primarily explores
questions of market concentration.

3 CONSUMER BEHAVIOR AND LEARNING
THEORY

We begin by describing our framework at a high level. In our models,
firms use data to create a classifier (or other machine learning
model) that is then used to serve consumers. Consumers are split
into non-overlapping groups, and choose a firm based on how
well the firm’s model is performing for their group. Firms receive
revenue based on how many consumers they attract, but must pay
for the amount of the data they buy. The more data, the better their
model. The firms aim to maximize their profits. In the case where
there are multiple firms, the goal of each firm is to maximize their
profit at equilibrium, as other firm’s choices affect the number of
consumers that they get, and hence their choices. Here, the firm’s
only (strategically relevant) choice is how much data to buy.

We start with the monopoly case, where there is only one firm.
The firm chooses a number of data pointsMд to buy for each group,
where we writeM for the vector of these choices; we write εд(Mд)

for the worst-case error the firm can guarantee for group д, and
assume this error is known to consumers. The groups then respond
by entering the market according to a demand function Dд(εд),
where Dд(εд) represents the proportion of д that uses the firm’s
model. Each group has µд total people, so the firm’s revenue is
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∑
д∈G µдDд(εд(Mд)). The firm also pays for the data, represented

by a cost function C(M).
We will discuss our choices for ε , D, andC in Sections 3.1 and 3.2.

But for now, the firm’s profit is just the revenue the firm makes
minus the cost it spends to acquire that data, leading to the following
optimization problem:

Definition 3.1 (The Monopolist’s Problem). The firm chooses
M to maximize its profit π (M), i.e.

max
M

π (M) = max
M

∑
д∈G

µдDд(εд(Mд)) −C(M).

Because we will assume in Section 3.1 that εд is a deterministic
function ofMд , we can also rewrite this optimization problem as

max
ε

π (ε) = max
ε

∑
д

µдDд(εд) −C(ε),

where ε is the vector of εд . We define π (ε) =
∑
д µдDд(εд) −C(ε)

as the total profit the monopolist makes. We will have an ad-
ditively separable cost function in д, i.e. C(ε) =

∑
д∈G Cд(εд),

which will allow us to also refer to the per-group profit: πд(εд) =∑
д∈G µдDд(εд) −Cд(ε).
On the other hand, when there are multiple firms F , maximizing

profit is not longer just an optimization problem, because each
firm’s optimal choice will depend on its opponent’s choice. So in-
stead, we search for a Nash equilibrium, which is the workhorse
solution concept in classical game theory. Under such a Nash equi-
librium, each firm plays their best response, given all the choices
of the other firms. For a more thorough background, see [17].

Extending our notation, we have the same components as in the
monopolist case, except now we writeMдi for the number of data
points the ith firm buys for group д, εдi is the error rate of the ith
firm on group д, and Dдi (εд) = Dдi (εдi , εд,−i ) is the demand for
the ith firm from group д, given the vector εд = (εдi )i ∈F of error
rates.

Definition 3.2 (The Competitor’s Problem). Firms simulta-
neously announce their choices, resulting in a matrixM = (Mдi ) of
data points purchased. Each group in the market responds according
to εд(Mд).

Then a (pure) equilibrium under profit-maximizing firms is a set
of vectorsM∗

i chosen with a best response:
For all i ,

M∗
i = argmax

Mi

πi (Mi ,M
∗
−i )

where for anyM ,

πi (Mi ,M−i ) =
∑
д

µдDдi (εдi (Mдi ), εд,−i (Mд,−i )) −C(Mi ).

We will only consider pure strategy Nash equilibria in this work.
Again, we can write an equivalent definition of the competitor’s

problem in terms of error:

max
εi

πi (εi , ε
∗
−i ) = max

εi

∑
д∈G

µдDдi (εдi , ε
∗
д,−i ) −C(εi ),

where ε∗i is the vector of error rates given by the associated equi-
librium choiceM∗

i . We also use πдi (εдi , ε∗д,−i ) = µдDдi (εдi , ε
∗
д,−i )−

Cд(εi ) to refer to the profit i makes on group д.

Note that a firm i only enters amarket in the first place if πi (ε∗) >
0. In this work, we do not consider the case when πi (ε∗) ≤ 0, as our
goal is to show that even when firms do enter the market for each
group, market forces may still create a disparity between groups.

Finally, in Section 6, we discuss imposing regulation on a monop-
olist to ensure some kind of ‘fairness’ across groups. We consider
two different kinds of constraints a regulator could impose on a
firm. The first is what we refer to as relative error equality, which
roughly corresponds to group fairness in binary classification [5]
For all д,д′ ∈ G, we require

εд

εд′
≤ (1 + χ ),

for parameter χ ≥ 0. On the other hand, we could ask for an absolute
error guarantee, requiring that the error rates for both firms are low,
regardless of how close to each other they are: For all д ∈ G, we
require instead

εд ≤ χ .

This roughly corresponds with maximin notions of fairness, e.g. [5,
7, 16].

We investigate what happens when a monopolist satisfies one
of these two constraints. Because error is the relevant quantity
from the regulator’s perspective, and error and data investment are
so tightly linked, we write the regulated monopolist’s problem in
terms of the choice of error:

Definition 3.3 (Regulated Monopolist’s Problem). The firm
choosesM to maximize its profit π (M) subject to a constraint:

max
ε

π (ε) = max
ε

∑
д

µдDд(εд) −C(ε) s.t. fr (ε) ≤ 0 ∀r ∈ R,

where either R = G ×G and fд,д′(ε) = εд − (1+ χ )εд′ , or R = G and
fд(ε) = εд − χ .

Just as is the case in binary classification, where different settings
may call for different notions of fairness, which version of fairness
regulator should impose will depend on the context and the ethical
assumptions she maintains.

3.1 Data, Costs, and Learning Theory
A key component to our model is how choices in data investment
drive error rates. We assume that firms build a model to provide
a product to consumers, and that this model is learned from data.
The firms have access to independent and identically distributed
data from fixed data sources that reflect the same distribution that
consumers care about.

In the PAC model of learning [23], there is a class of hypotheses
H , and each hypothesis h ∈ H has an associated risk R(h), typically
representing the error rate ofh. For example, in binary classification,
R(h) = Ex,y∼D [h(x) , y], though our model will be applicable to
other settings as well. With only access to data drawn from D,
rather than D itself, the learner cannot guarantee its risk, but can
achieve high probability upper bounds on its risk. In the agnostic
PAC setting, there is a learning algorithm that upon seeing a sample
of size M , except with probability δ , returns a hypothesis h such
that

R(h) − min
h′∈H

R(h′) ≤ K

√
dH + log(1/δ )

M
,
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where minh′∈H R(h′) is the Bayes error, dH is the VC dimension
of H , and K is a universal constant. (See [28] for more on PAC
learning, VC dimension, and the various kinds of PAC learning.)

To model the fact that getting appropriate data can have group-
dependent sources and thus costs, we assume data for each group is
drawn separately from distributions Dд . The firms chooseMд , the
number of data points to draw, and will use a learning algorithm
with a PAC guarantee for each data set and give to a consumer of
group д the output of the corresponding hypothesis.

Achieving such bounds would not be useful to the firm unless
consumers make decisions based on these bounds. Here, we assume
that the consumers have no more access than the firms: they do
not have access to the distribution, so they cannot make decisions
based on the true group-level error rates. Given this, we assume
that the consumers use firms’ bound on the excess error R(h) −
minh′∈H R(h′), which we refer to as the worst-case excess error
rate. Of course, in reality, consumer decisions are not necessarily
based on the worst-case error rate. However, given that consumers
often do in practice have to make choices using relatively little
information about firms, and have trouble predicting how well
exactly a firm will treat them, we believe this is a natural place to
start. In particular, bounds on the the excess error rates represent the
minimal amount of information consumers need to make informed
decisions.

Thus, we set

εдi (Mдi ) =
γд

M
1/q
дi

,

for constants γд > 0 and q > 0. For example, in agnostic PAC
learning, q = 2 and γд =

√
K(dH + log(1/δ )). Note that we are

assuming δ is fixed ahead of time, but we allow in general for γд to
be group-dependent. Agnostic PAC learning is far from the only
type of learning to have this form; the realizable PAC setting, the
multi-class setting, and many regression settings all have this form
[28].

This set-up does ignore the possibility of transfer learning, i.e. us-
ing the data fromDд to help with learning for another group д′. We
avoid this scenario so as to concentrate on the ‘unfairness’ gener-
ated via the market incentives instead of the unfairness generated,
for example, when an assumption about the similarity between Dд
and Dд′ fails to hold.

The choice ofMд determines not only the worst-case error rates,
but the cost to the firm of generating that data, either by collecting
it in the wild or buying it from another source. As mentioned above,
we permit the costs to be group-dependent. We assume the cost is
additively separable and linear inMд :

Cдi (Mдi ) = ϕдi + cдiMдi and Ci (Mi ) =
∑
д∈G

Cдi (Mдi ),

for constants ϕдi , cдi , where ϕдi represents the fixed cost of enter-
ing the market.

Since we can rewriteMдi = (γд/εдi )
q , this model is equivalent

to first choosing a worst-case error rate εдi and then paying a cost

Cдi (εдi ) = ϕдi +
γд

ε
q
дi

for each group д, where γд is redefined to minimize the number of
constants we employ.

So now
Mдi =

γд

cдiε
q
дi
.

This version is the one we will use for the remainder of the paper.
Note that the cost function is convex, which means that whenever
the demand is concave, so is the profit function.

3.2 Models of Consumer Choice
The firm’s revenue is driven by how demand for its product reacts
to its choice of worst-case error guarantees. We consider several
models of this demand, each inspired by well-studied models in
microeconomics. While firms are primarily concerned only with ag-
gregate changes in demand, rather than the decisions of individual
consumers, each of our models can be founded on natural models
of individual consumer behavior, and we provide such models in
several cases.

In the monopoly case, we use a simple model of linear demand;
while an idealization, linear demand is often used even in econo-
metric estimation (see e.g. [18]). In the competitive case, there are
a variety of natural demand models, each embedding different as-
sumptions about how consumers choose between firms and how
stringently they react to differing error levels. We study three mod-
els along a spectrum of rationality: amultilinear demand, generaliz-
ing the monopoly case; a parameterized proportional demand; and
an approximately rational demand, where consumers exclusively
use the firm with lowest error (up to some tolerance).

We give the details of these models of demand in each appro-
priate subsection in Sections 4 and 5. Under each model, there are
parameter regimes where firms choose not to invest in data collec-
tion for some groups at all ; while this may reflect some real-world
scenarios, the purpose is of this paper is to highlight economic
incentives that create inequality even aside from such extreme sce-
narios. As such, we will focus on interior optima or equilibria. In
an interior optimum, the monopolist must make positive profit (so
that it enters the market) and choose error rates strictly smaller
than 1 for each group (so that it is investing in data collection for
each group). Similarly, interior equilibria require that profits for
both firms must be positive and each error rate strictly smaller than
1. Our theorems statements will highlight this focus.

4 MONOPOLY
We start with the case where there is one firm in the market and
demand is linear:

Definition 4.1 (Linear Demand). A linear demand function for
each group д is given by:

Dд(εд) = αд − βдεд ,

where 0 < β ≤ α ≤ 1.

A linear demand curve can arise from a simple model of con-
sumer behavior: suppose utility-maximizing consumers consider
whether or not to use the product, and only use it if it is above some
threshold (equivalent to being better than some ‘outside option’).
If these thresholds are uniformly distributed over some interval,
then demand will be linearly decreasing over an interval. Strictly
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speaking, this is a piecewise linear demand, but this does not greatly
affect optimal behavior of the firm - it merely means that it will
never choose outside the linearly decreasing range unless they
are choosing not to invest in providing quality products at all. For
simplicity of our theorem statements, we will assume that parame-
ters are such that the firm’s achievable errors are a subset of the
linear portion of the demand curve, here 0 < β ≤ α ≤ 1, but in
Appendix A, we generalize to arbitrarily large α , β to ensure that
our results still qualitatively hold.

Our main result here is the following:

Theorem 4.2 (Monopoly Ineqality). Suppose a monopolist
with learning rate q faces linear demand. Then in any interior opti-
mum, for every pair of groups д and д′, the error inequality is given
by:

ε∗д

ε∗д′
=

(
µд′βд′γд

µдβдγд′

) 1
q+1
.

Again, we focus on an interior optimum. Three factors affect the
error gap between the minority and the majority: the size of the mi-
nority as a share of the total market; the marginal cost of gathering
data on the minority vs. on the majority; and the elasticities of the
populations with respect to the error. It is also worth noting that
the fundamental nature of the learning problem, via the learning
rate q, affects the magnitude of error inequality.

Theorem 4.2 is a consequence of the following lemma:

Lemma 4.3. Suppose a monopolist with learning rate q faces lin-
ear demand. Then in any interior optimum, error levels set by the
monopolist are given by:

ε∗д =

(
qγд

µдβд

) 1
q+1
.

Proof. Recall that

π (ε) =
∑
д∈G

µд
(
αд − βдεд

)
−

∑
д∈G

(
ϕд +

γд

ε
q
д

)
.

Now, we notice that this profit function is separable into the sum
of profits from each market. Differentiating with respect to εд sep-
arately and setting to zero,we arrive at the first-order conditions:

∂π

∂εд
= −µдβд +

qγд

ε
q+1
д
= 0.

Solving this equation yields ε∗д =
(
qγд
µдβд

) 1
q+1 . This is indeed a

maximum because profit is concave, so the only alternative is an
exterior optimum. □

Notice that if, for all д, πд
(
ε∗д

)
> 0, πд

(
ε∗д

)
> πд(1), and ε∗д < 1,

then the interior optimum exists and is unique.

5 COMPETITION
In this section, we show that under most reasonable models of
competition, the introduction of competition does not mitigate
error-inequality compared to the monopoly equilibrium, and may,
in fact, increase it. Only under Bertrand-like competition, which
assumes consumers are strictly rational, is inequality significantly

mitigated. In particular, we show that under both the Tullock and
the multi-linear models of demand, the inequality between groups
as measured by the error rates does not improve relative to the
monopoly case. In the case of the Tullock model, as a function of
the relative size of the groups, inequality is actually worse.

5.1 Multilinear Demand
Next, we consider a simple generalization of linear demand to
the two-firm case. This model can be interpreted as a model of
competition in identical products with differing quality levels as
in [2], but can also be interpreted (as well as microfounded, and
used to estimate structural parameters, as in [6]) as markets for
imperfect substitutes.

Definition 5.1 (Multilinear Demand). The multilinear linear
demand function is, for firms i and j, and for each group д,

Dдi (εдi , εдj ) = αдi − βдεдi + λдεдj ,

where 0 < λд < βд ≤ αдi and αдi + λд ≤ 1.

We require βд > λд so that demand reacts more strongly to a
firm’s own error rates than its opponents – this ensures that if both
firms increase error, total demand decreases. The other conditions
on the parameters are to ensure that the demand is truly (multi)-
linear, as opposed to piece-wise linear.

Note it is not the case that all consumers choose the firm with
lower error, as one might expect if the products of the firms were
perfect substitutes. Instead, users switch between firms depending
on their error rates, and even if firms achieved perfect accuracy, the
split of the total market might not be even, as captured by differing
αдi . This could represent brand loyalty, for example, or perhaps
that firms’ products are not perfectly identical.

Our main result for this case states that the gap between error
rates is the same as in the monopoly case:

Theorem 5.2. Suppose that two firms with learning rate q compete
under multilinear demand. Then in any interior equilibrium, for every
pair of groups д and д′, error inequality is given by

ε∗дi

ε∗д′i
=

(
µд′βд′γдi

µдβдγд′i

) 1
q+1
.

Theorem 5.2 is a consequence of the fact that the firm’s opti-
mal choice does not depend on its opponent’s error rates; that is
they have a dominant strategy. This is formalized by the following
lemma, which is enough to prove Theorem 5.2:

Lemma 5.3. Suppose that two firms with learning rate q compete
under multilinear demand. Then in any interior equilibrium, error
levels are given by

ε∗дi =

(
qγдi

µдβд

) 1
q+1
.

Proof. This proof will be very similar to that of Lemma 4.3, only
now, the behavior of the other firm will affect profit. Recall

πi (εдi , εдj ) =
∑
д∈G

µд(αдi + −βдεдi + λдεдj ) −
∑
д∈G

γдi

ε
q
дi
.
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We can see that even though the behavior of the other firm will
affect profit, firm i still has a dominant strategy. This is because the
first-order conditions do not depend on the other firm:

∂πi
∂εдi

= −µдβд +
qγдi

ε
q+1
дi

.

This is the same first order condition as in the monopolist’s case,

with the same implication: ε∗дi =
(
qγдi
µдβд

) 1
q+1 .

□

Similar to the case of the monoplist’s, notice that if, for all д, i ,
πдi

(
ε∗дi , ε

∗
дj

)
> 0, πдi

(
ε∗дi , ε

∗
дj

)
> πдi (1, ε∗дj ), and ε

∗
дi < 1, then an

interior equilibrium exists.

5.2 Proportional Demand
In this section, we consider a model inspired by [12], and thus,
indirectly, by the Tullock contest [32]. In particular, firms split the
market proportionally to the other firms’ error:

Definition 5.4 (Proportional Demand). In a multi-firm mar-
ket, we say that demand is proportionally split with competition
exponent ρ if

Dдi (ε) = 1 −
ε
ρ
дi∑
j ε

ρ
дj
=

∑
j,i ε

ρ
дj∑

j ε
ρ
дj
.

Here, we focus on the two-firm case, in which case we can write

Dдi (εдi , εдj ) = 1 −
ε
ρ
дi

ε
ρ
дi + ε

ρ
дj
=

ε
ρ
дj

ε
ρ
дi + ε

ρ
дj
.

Now we can write our inequality theorem:

Theorem 5.5 (IneqalityUnder ProportionalDemand). Sup-
pose two firms with learning rate q compete under proportional de-
mand. Then in any interior equilibrium error inequality is given by

ε∗дi

ε∗д′i
=

(
ρд′µд′

ρдµд

) 1
q
·
f (γдi ,γдj ,q)

f (γд′i ,γд′j ,q)
,

where

f (γдi ,γдj ,q) =
(γ
q
дi + γ

q
дj )

2
q

γ
1− 1

q
дi γ

q
дj

.

Recall that in the monopoly case, the exponent was 1/(q + 1)
instead of 1/q, meaning that introducing competition under this
model has actually exacerbated the effect of minority status on
inequality. Note also that the relative inequality between two groups
based on the results from a particular firm depends not only on that
firm’s cost structure for the two groups, but also on the opposing
firm’s cost structure for the two groups.

Proving Theorem 5.5 requires finding the equilibrium:

Lemma 5.6. Suppose two firms with learning rate q face propor-
tional demand with competition exponent ρ. In any interior equilib-
rium, error rates are given by:

ε∗дi =

(
qγдi

ρдµд

) 1
q (γ

q
дi + γ

q
дj )

2
q

γ
q
дiγ

q
дj

=

(
q

ρдµд

) 1
q (γ

q
дi + γ

q
дj )

2
q

γ
1− 1

q
дi γ

q
дj

.

If ε∗дi < 1 for all д and i then there exists a setting of parameters for
which (ε∗дi , ε

∗
дj ) is the unique equilibrium.

For brevity, we relegate the full proof and the characterization
of when these conditions hold, to Section C. Below, we detail the
instructive portion of the proof for the special case in which q =
ρ = 1.

Lemma 5.7. Suppose two firms with learning rate 1 face propor-
tional demand with competition exponent 1. In any interior equilib-
rium, error levels are given by:

ε∗дi =
1
µд

·
(γдi + γдj )

2

γдj
.

Sufficient conditions for existence are that for all д and i : ϕдi ≤

µдγ 2
д j

(γдi+γд j )2
, ε∗дi < 1 ,

(γдi+γд j )2

µдγд j < 1. If, moreover, mink γдk ≥

(maxk γдk )2, then (ε∗дi , ε
∗
дj ) is the unique equilibrium.

The conditions of Lemma 5.7 are stated in terms of γдi ; recall,
though, that γдi is not a primitive of our model, but rather the prod-
uct of the per-datapoint cost and learning theory constants. These
conditions thus imply conditions on these underlying constants. In
the symmetric case, this asks that the per-datapoint cost cд satisfies:

cд ≤
dH + log 1

δ
12q

.

which merely requires that the per-datapoint cost is not too large
relative to the desired hypothesis class and success probability. In
the asymmetric case, we require that firms do not face ratios of
data cost to learning constant that are too different from each other.
If either of these conditions is violated, then one or both firms may
have an incentive to stop investing completely in data acquired for
a group. Such non-interior equilibria can obviously lead to severe
error inequality, but again, Theorem 5.5 demonstrates the existence
of incentives to unfairness even ruling out these extreme cases.

Proof of Lemma C.1. We can write Firm i’s profit from each
group as:

πдi (εдi , εдj ) = µд
εдj

εдi + εдj
−
γдi

εдi
− ϕдj .

The strategy space of the firm is to select an εдi for each group in
(0, 1]; we search for a pure strategyNash equilibrium. At a high level,
our strategy to do so is as follows: first, we fix the opposing firm’s
action εдj . Optimizing Firm i’s profit gives a best-response to the
fixed action εдj . An equilibrium pair must simultaneously satisfy
both firms’ first order conditions, given the other, so we obtain
two simultaneous equations that yield the equilibrium relationship
between the two firms’ actions. Solving this yields a candidate
solution. Then, we can show that the candidate solution is indeed
a maximum via the concavity of the profit function. Finally, we
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need but check that there are no solutions at the endpoints, and we
provide conditions when this is ruled out.

Now, fixing Firm j’s choice εдj , the profit function πд is just a
function of εдi . Differentiating this gives:

∂πдi

∂εдi
= −εдj µд(εдi + εдj )

−2 + γдiε
−2
дi .

We set this equal to zero. Since satisfying this condition is required
for εдi to be a best-response we can plug in ε∗дj , whatever that may
be, requiring:

ε2
дiε

∗
дj

µдγдi
= (εдi + ε

∗
дj )

2, (1)

and in particular, this must apply to the best-response ε∗дi . We
can apply similar logic to Firm j. Hence, for (ε∗дi , ε

∗
дj ) to be best-

responses to each other – that is, to be in (interior) equilibrium –
we must have that

ε∗дi
2ε∗дj

µдγдi
= (ε∗дi + ε

∗
дj )

2 =
ε∗дj

2ε∗дi

µдγдj
. (2)

This implies that

ε∗дj = ε∗дi
γдj

γдi
.

Substituting this condition back into Equation 2, we obtain that

ε∗дi
3 γд j
γдi

µдγдi
= (ε∗дi + ε

∗
дi
γдj

γдi
)2 =⇒ ε∗дi =

(γдi + γдj )
2

µдγдj
.

Symmetric logic yields ε∗дj =
(γдi+γд j )2

µдγдi .
Now, to show that this candidate solution is indeed an equi-

librium, we must show that these actions are best-responses to
each other. Fix ε∗дj =

(γдi+γд j )2

µдγдi . Then we can view πдi (εдi , ε
∗
дj )

as a continuous function on (0, 1]. By construction, evaluating
∂

∂εдi
πдi (εдi , ε

∗
дj ) at ε

∗
дi must give zero. (It is also easy to verify

that this is indeed the case.) If πi,ε∗д j (εдi ) is concave at ε
∗
дi , then

that is a local maximum of the profit function (given ε∗дj ).
To see that it is concave, note that

∂2

∂ε2
дj
πдi (εдi , εдj ) = 2εдj µд(εдj + εдi )−3 − 2

γдi

ε3
дi
.

Evaluating this quantity at ε∗дi gives:

∂2

∂ε2
дi
πдi (εдi , ε

∗
дj )

����
εдi=ε∗дi

= 2µд
(γдi + γдj )

2

µдγдi

(
(γдi + γдj )

2

µдγдj
+
(γдi + γдj )

2

µдγдi

)−3

− 2
γдi

((γдi + γдj )2/(µдγдi ))3
.

Straightforward, if tedious, algebra lets us rewrite the right hand
side and conclude that

∂2

∂ε2
дi
πдi (εдi , ε

∗
дj )

����
εдi=ε∗дi

=
2µ3

дγ
3
дjγдi

(γдi + γдj )6

[
γдi

γдi + γдj
− 1

]
.

But notice that this quantity is always negative if costs are posi-
tive; hence, ε∗дi is indeed a local maximum of πi,ε∗д j .

To ensure that this point is a global maximum, we must com-
pare it with the profit at the endpoint. For brevity, we defer this
calculation to the Appendix in Section C

Finally, note that equilibrium profits are positive if πдi (ε∗дi , ε
∗
дj ) ≥

0; this is true whenever

µдγ
2
дj

(γдi + γдj )2
≥ ϕдi , (3)

i.e. fixed costs are not extremely large. Positive profits and the
fact that ε∗дi globally maximizes profit given γ ∗дj ensures that the
putative equilibrium pair forms an equilibrium.

To identify conditions in which this equilibrium is unique, we
need to eliminate the only other possible equilibrium (both firms
choosing ε = 1). Again, for brevity, we defer this calculation to the
appendix.

□

Again, we pause to highlight several intuitive properties of the
equilibrium. First, Firm i’s choice of error for group д is decreasing
with themarket size of Groupд as well as the ferocity of competition
in Group д. These results are similar to those of Lemma 4.3, with
a different functional form and the competition exponent of the
Tullock game replacing the error elasticity of demand. It is also,
intuitively, increasing in γдi and decreasing in γдj , though this is
harder to see due to the functional form of f .

5.3 Approximately Rational Demand
Now we consider markets where consumers behave rationally. If
we allow consumers to behave fully rationally, in the sense of
always picking the firm with (even infinitesimally) smaller error,
we obtain a model similar to the Bertrand model of competition
[19]; accordingly, no equilibrium exists, as we show in Section B.3.
Hence, we instead consider a slight relaxation of the fully rational
model: Suppose consumers behave rationally, except that they do
not care about excess error up to ζд over the optimal error. That
is, the lower firm will capture the whole market for errors that are
not too small, but for εдi , εдj ∈ [0, ζд], firms again split the market.

We formally define this demand function below:

Definition 5.8 (Bertrand-like TolerantDemand). In amulti-
firm market, we say demand is ζ -tolerant rational with ζ > 0 if

Dдi (ε) =



1 mink εдk > ζд and εдi < min
j,i

εдj

1∑
j 1[εд j=min

k
εдk ]

mink εдk > ζд and εдi = min
j,i

εдj

0 mink εдk > ζд and εдi > min
j,i

εдj

1[εдi ≤ζд ]∑
j 1[εд j ≤ζд ]

mink εдk ≤ ζд

.

We will show that there exists a unique equilibrium here (for ap-
propriate parameters) in which groups’ error levels are determined
not by their sizes, but by their optimal errors and their tolerances.

Theorem 5.9 (Approximately Rational Ineqality). Suppose
that two firms compete under ζ -tolerant demand. Then in any interior



FAT* ’20, January 27–30, 2020, Barcelona, Spain Hadi Elzayn and Benjamin Fish

equilibrium, error inequality is given by

εд

εд′
=

ζд

ζд′

where ζд , ζд′ is users’ tolerance threshold (assumed to be strictly

positive). Moreover, if γдi <
ζд µд

2 for all д, i , the unique equilibrium
is interior.

In particular, Theorem 5.9 shows that under this approximate
Bertrand-like model of competition, the dependence on group size
in the error inequality is eliminated. Instead, inequality depends
merely on the optimal error achievable under the hypothesis class
used by firms and groups’ tolerances.

Note that the conditions of Theorem 5.9 is just asking that

cдi ≤

(
µдζд

2

)q 1
dHi + log 1

δ

.

As before, we can interpret this as a condition that the per-datapoint
cost is not too large relative to the total market size and the learning
theory constants.

Theorem 5.9 follows from the following lemma:

Lemma 5.10 (Approximate Rational Eqilibrium). Suppose
that two firms compete under ζ -tolerant demand, and γдi <

ζд µд
2 for

all д, i . Then an interior pure strategy equilibrium exists in which

ε∗дi = ζд ,

and this equilibrium is unique.

Proof. We posit that the profile (ζд , ζд) is an equilibrium. To see
this, note that a firm deviating to some ε > ζд would lose its entire
market share, and so would end up with negative profit. Under the
conditions of the theorem, though,

πi (ζд , ζд′) =
µд

2
−
γi
ζд
> 0

so deviating to a higher error, with negative profit, cannot be a
profitable deviation. On the other hand, deviating to ε ∈ [0, ζд)
would result in the same market share, but with increased costs.
Hence, deviating to decreased error is also not a profitable deviation.

To see that there can be no other equilibria, notice that if both
firms were setting error in ∈ [0, ζд), they would have an incentive
to deviate to ζд ; if one firm’s error were in that range and the
other’s were above, then the firm with higher error would have an
incentive to deviate to ζд ; and finally, if both firms were above ζд ,
either firm could profitably deviate to slightly lower error. □

Unfortunately, even this relaxation of full rationality may not
be a realistic model of competition in many cases; it still requires
that outside of the range of [0, ζд], all consumers are perfectly
discerning. This is unlikely to be true in practice. Without such an
assumption, the conclusions of this model do not hold. Models like
the proportional split and multilinear demand are more likely to
capture salient market features in practice.

6 REGULATION
In this section, we consider the perspective of a regulator with the
power to require one of two kinds of error equality, and analyze the
response of the monopolistic firm to each. These constraints that
the regulator may impose are relative error equality and absolute
error equality. We quantify the direct cost associated with imposing
these constraints, in terms of increased error to the majority group
under the first kind and lost profit to the monopolist in both. This
serves to give a sense of the direct tradeoffs involved in regulating
machine-learning driven markets. We highlight, though, that there
may be non-quantifiable benefits to equity across groups, and only
societal deliberation can evaluate these tradeoffs.

Which of these two types of regulation is preferred will depend
on the context. Requiring errors across groups to all be similar –
relative error equality – may not be sufficiently strong if large error
is harmful regardless of another group’s error rate, but also may be
too strict when small absolute errors are perceived as approximately
equivalent. On the other hand, absolute error equality – where
we require all errors to be below a threshold – treats all small
absolute errors as equivalent, but still allows a large relative gap
in error rates across groups. An absolute error bound shifts the
‘burden’ of fairness entirely to the firm, which may be preferable
from a consumer standpoint; at the same time, decreasing profits
for monopolies may reduce the incentive to innovate, which may
also be undesirable.

We make the following assumption for the rest of the section for
ease of exposition:

Assumption 6.1. There are two groups G = {A,B}, there is an
interior optimum εMA , ε

M
B < 1 (i.e. the unconstrained monopoly enters

the market), and B has lesser market power and higher data costs, i.e.

µBβB ≤ µAβA and γB ≥ γA .

We refer to group A as the majority group and B as the minority
group. We also define (εMA , ε

M
B ) and (εRA, ε

R
B ) to be the monopolist’s

and regulated monopolist’s optimal choices, respectively.
Note that an immediate consequence of Assumption 6.1 and

Theorem 4.3 is that εMB ≥ εMA . Finally, we defer omitted proofs from
this section to Sections D and E.

6.1 Relative Error Equality
In this section, we imagine that a regulator requires the monopolist
to achieve error rates within a bounded ratio. We will show that a
monopoly responds by investing less in majority data collection and
more in minority data collection than it otherwise would, resulting
in worse error rates for the majority, better error rates for the
minority, approximate equality between groups, and lower profits
for the firm. In particular we quantify by how much error rates
worsen for the majority and by how much profits are lowered for
the monopolist, which we refer to as the ‘price’ of fairness.

We formalize the regulator’s constraint as follows:

Definition 6.2 (Relative error eqality). The regulator forces
the firm to achieve error guarantees of bounded ratio:

εA
εB

≤ 1 + χ and
εB
εA

≤ 1 + χ

where χ is a positive constant.
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As in Section 4, we consider a profit-maximizing monopolist. As
before, each group has linear demand with market sizes µA and µB .

Now, if the regulation has ‘bite’ – that is, if it changes the outcome
– the regulated monopolist does the minimum it can to satisfy the
constraint; that is, it sets εRB = εRA(1 + χ ). Formally:

Lemma 6.3 (Saturation). Suppose that the unregulatedmonopoly
sets εMB > εMA (1 + χ ). Then the profit-maximizing monopoly facing
the relative error constraint sets

εRB = εRA(1 + χ ).

The proof follows from concavity and Jensen’s inequality; we
provide details in D.

Lemma 6.3 allows us to characterize the regulated monopolist’s
optimal choice of errors under this regulation:

Theorem 6.4. Suppose that the unregulated monopoly sets er-
ror εMB > (1 + χ )εMA . Then in any interior optimum, the regulated
monopoly sets the errors as

εRA =

(
q ·

γA + γB/(1 + χ )q

µAβA + µBβB (1 + χ )

) 1
q+1

and εRB = (1 + χ )εRA .

Proof. By Lemma 6.3, εRB = (1 + χ )εRA . Thus, the profit maxi-
mization problem can be written solely as a function of εA:

π (εA) = µA(αA − βAεA) + µB (αB − βBεA(1 + χ ))

−

(
ϕA +

γA

ε
q
A

)
−

(
ϕB +

γB

ε
q
A(1 + χ )q

)
.

Then, the first order condition is

µAβA + µBβB (1 + χ ) =
q (γA + γB/(1 + χ )q )

ε
q+1
A

,

and hence we must have that

εRA =

(
q (γA + γB/(1 + χ )q )

µAβA + µBβB (1 + χ )

) 1
q+1
.

Concavity guarantees that this is a global optimum. □

These together provide insight into to what the regulation is
doing. The monopolist’s problem can be written as:

max
ε

π (ε) = max
ε

µAαA + µBαB − (µAβA + µBβB (1 + χ ))ε

− (ϕA + ϕB ) −
1
εq

(γA + γB/(1 + χ )q ).

This is equivalent to facing a single population of with demand
function µAαA+µBαB −(µAβA+µBβB (1+ χ ))ε , fixed cost ϕA+ϕB ,
andmarginal cost (γA+γB/(1+χ )q ). We later use this interpretation
to quickly calculate the constrained monopolist’s profits.

One might worry that imposing fairness requires making both
groups worse off in an absolute sense. It turns out that this is not
the case; if the regulation has bite, then it necessarily increases
the error of the majority group, and necessarily decreases the error
of the minority group. That is, equality comes at a price for the
majority group, but does not require a Pareto deterioration.

Our first result is that the monopolist will respond to regulation
by increasing majority error rates.

Corollary 6.5.

εRA ≥ εMA and εRB ≤ εMB .

At this point, members of the majority group may be concerned
because their error rate increases. We refer to the gap between their
error rates under the constrained and unconstrained monopolies
as a price of fairness for this reason, even though imposing this con-
straint may be on the whole desirable from a societal perspective:

PoF1+χ =
εRA

εMA
.

Fortunately, we can show this price is relatively small:

Corollary 6.6 (Price of Fairness Upper Bound).

PoF1+χ ≤

(
1 +

γB
γA

·
1

(1 + χ )q

) 1
q+1
.

Unsurprisingly, this bound is increasing in the ratio of minority
cost to majority cost and decreasing in the leniency of the regulator.
Also unsurprisingly, decreasing the ratio µB

µA or βB
βA

and increasing
the ratio γB

γA all increase the price of fairness for the majority.
If regulation changes the monopolist’s behavior, it must weakly

decrease profits. This loss is quantifiable as another price of fairness:

Definition 6.7 (Monopolist Price of Fairness, Relative Er-
ror). We define the price of fairness as the ratio between the uncon-
strained monopoly profit and constrained monopoly profit under the
relative error constraint, i.e.

MonPoF1+χ =
π

(
εMA , ε

M
B

)
π

(
εRA, ε

R
B

) = π (εMA , ε
M
B )

maxεA,εB : εAεB ≤1+χ, εBεA ≤1+χ π (εA, εB )
.

We can write down this price of fairness as a function of the
parameters of the model:

Theorem 6.8. The Monopolist’s price of fairness is given by
MonPoF1+χ =

µAαA + µBαB −Q (µAβA)
q
q+1 γ

1
q+1
A −Q (µB βB )

q
q+1 γ

1
q+1
B

µAαA + µBαB −Q (µAβA + µB βB (1 + χ ))
q
q+1 (γA + γB 1

(1+χ )q )
1

q+1
,

where Q = q
1

q+1 + 1
qq/(q+1) .

Proof. The optimal solution to the monopolist’s problem with
parameters µд ,αд , βд ,γд for д in G = {A,B} is the following:

π∗(ε∗) =
∑

д∈{A,B }

µдαд − (µдβд)
q
q+1γ

1
q+1
д Q .

(See Appendix D.) Using this form and plugging in the market
parameters, we obtain the optimal profit of the unconstrained mo-
nopolist for the numerator. The denominator is derived using the
interpretation of the constrained monopolist’s problem as optimiz-
ing its profits against a single market with parameters modified by
regulation, and plugging these parameters into the same form. □

Theorem 6.8 provides a quantitative price of fairness in terms of
monopoly profits. However, it is somewhat unwieldy; Proposition
6.9 provides some clarity on the limiting behavior of this price of
fairness as a function of the minority group’s size in absolute terms.
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Proposition 6.9 (MonPoF Limit - Relative Error Ineqality).
Let µB/µA = r for constant ratio r . Then

lim
µB→∞

MonPoF1+χ = 1.

On the other hand, for constant µA,

lim
µB→0

MonPoF1+χ =
1 − (Q/q)εMA

1 − (Q/q)εMA

[
1 + γB

γA
1

(1+χ )
1

q+1

] 1
q+1

where Q is as above.

6.2 Absolute Error Equality
In this section, we suppose instead that the regulator imposes an
absolute upper bound on error rates for each group. We show that
the monopolist responds by purchasing just enough data to meet
the constraint using the profits from the majority to subsidize the
minority. In this case, minority error rates can be improved without
increasing error for the majority; the regulator can even improve
error rates for the majority as well, up to a point. We characterize
the price of fairness for the monopolist and the minimum error the
regulator can guarantee. We formalize this constraint as follows:

Definition 6.10 (Absolute error eqality). For χ < 1, the
regulator forces the firm to achieve error of:

εA ≤ χ and εB ≤ χ .

We have another saturation lemma for this kind of constraint
too: either the unconstrained error was already less than χ , or the
profit maximizing error subject to regulation is exactly χ . Formally:

Lemma 6.11 (Saturation). ∀д ∈ {A,B}, if εRд , εMд then εRд = χ .

Lemma 6.11 lets us reason very simply about the behavior of the
regulated monopolist: for any group in which imposing regulation
requires the firm to improve error rates, the firm will use up the
entirety of this ‘error budget.’ Profit will decrease, of course, because
imposing constraints can only decrease its objective. In this scenario,
if the firm enters the market at all, it must enter the market for both
groups so as to achieve the constrained error rates. A regulator then
has to choose χ so as to still induce the firm to enter the market at
all if they want to ensure the constrained error rate for the minority
group. Of course, a regulator may also wish to choose the smallest
such error rate, which we refer to as the minimum achievable error.
Lemma 6.11 let us characterize the minimum achievable error:

Proposition 6.12. Let χ0 be the smallest χ ∈ [0, 1] which solves

K1χ
q+1 + K2χ

q − K3 = 0, (4)

where K1 = −(µAβA + µBβB ), K2 = µAαA + µBαB − ϕA − ϕB , and
K3 = γA + γB . χ0 exists and is the minimum achievable error, i.e. the
minimum χ ∈ [0, 1] for which the monopolist still enters the market.

Equation 4 can be solved via the quadratic or cubic formulae in
the realizable and agnostic cases, respectively, and learning rates
in between can be accommodated numerically. This leads us to the
monopoly’s optimal error rates as a function of χ :

Theorem 6.13 (Absolute Outcomes). Outcomes fall into one of
the following possibilities:

(1) If χ ≥ εMB then (εRB , ε
R
B ) = (εMA , εMB ).

(2) If εMA ≤ χ < εMB then (εRB , ε
R
B ) = (εMA , χ ).

(3) If χ0 < χ < εMA then (εRB , ε
R
B ) = (χ, χ ).

(4) If χ < χ0 then the firm exits the market.

Proof. Case 1 is trivial. Case 2 and 3 follow from Lemma 6.11.
Case 4 follows by the definition of χ0. □

Theorem 6.13 contrasts starkly with Theorem 6.5: as long as the
constraint is not so strict the monopolist exits the market, outcomes
either improve for the minority and remain just as good for the
majority, or improve for both groups. In other words, this style of
regulation does not impose a price of fairness on the majority. Note
that unless ε0 < χ < εMA , the regulator is not guaranteeing relative
equality. Which type of equality is preferable will depend on the
context. Of course, this regulation does still impact profit:

Definition 6.14 (Monopolist Price of Fairness). We define
the monopolist’s price of fairness under absolute error constraints as:

MonPoFχ =
π

(
εMA , ε

M
B

)
π

(
εRA, ε

R
B

) = π (εMA , ε
M
B )

maxεA,εB :εA≤χ,εB ≤χ π (εA, εB )
.

Notice that given the market parameters, Theorem 6.13 allows
the regulator to evaluate the monopolist’s price of fairness for each
potential choice of error threshold via straightforward calculation.
Proposition 6.15 characterizes the limiting behavior of the monopo-
list’s price of fairness as a function of absolute size of the minority
group under absolute error guarantees, and these are qualitatively
similar to limiting behavior under relative error guarantees.

Proposition 6.15 (MonPoF Limit - Absolute Error Guaran-
tees). For fixed χ , and for µB → ∞ at a constant ratio µA/µB = r :

lim
µB→∞

MonPoFχ = 1.

On the other hand, let χ0 be the minimal achievable error when
µB = 0 (i.e. when the firm faces group A alone). Then if χ > χ0, then
MonPoFχ converges to a parameter-specific constant as µB → 0.

7 DISCUSSION
In this work, we identify economic incentives leading to unfairness
in data-driven markets. At a high level, we show that monopolists
are incentivized to invest less in minority groups (as measured
by market size, elasticity, and data costs) because they are less
profitable; that competition does not mitigate this incentive towards
inequality, under reasonable models; and that judicious regulation
can improve outcomes, potentially at a cost in terms of profits or,
depending on the regulation, error rates for the majority group.

We view this paper as highlighting an important and understud-
ied point of view, but certainly not as the last word. We made many
choices that situate our models in particular contexts; for example,
the assumption that firms and users benefit from improved accuracy
does not capture many settings that currently are or will soon be
urgent domains of adjudicating fairness concerns - machine learn-
ing in loans, insurance, and facial recognition systems are obvious
cases, but the potential, and consequent scope for unfairness, is
vast. We hope that future work will further clarify the possibility
- and perhaps necessity- of leveraging policy tools in addition to
algorithmic solutions to combat unfairness in machine learning.
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A PIECE-WISE LINEAR DEMAND
In this section, we consider the possibility of a piece-wise linear
demand function. Such a demand has the same spirit of the linear
demand function, in that market share declines linearly with worst-
case error rate, but allows for a more general parameter range.
In particular, a firm with piece-wise linear demand may capture
less than the full market (but, logically, not more) with perfect
accuracy, and may lose the entire market even at relatively high
accuracy. Imposing a cap and floor on a linear demand function
whose parameters fall outside the restricted range described in
Section 4 allows us to accomplish this.

We formally write piece-wise linear demand as follows:

Dд(εд) =


0 if εд ≥ αд/βд

αд − βдεд if αд−1
βд

≤ εд ≤ αд/βд

1 if εд ≤
αд−1
βд
,

where αд , βд > 0, and αд−1
βд
< 1.

Finding the optimal choice of the monopolist under this demand
requires slightly more care than linear demand but is substantively
similar. We provide an outline below.

Lemma A.1. For convenience, let

ε̃д = max

{
min

{(
qγд

µдβд

) 1
q+1
,
αд

βд
, 1

}
,
αд − 1
βд

}
.

A monopolist, under linear demand enters the market for group д
if and only if

πд
(
ε̃д

)
> 0,

and if they do, the equilibrium error rate ε∗д is:

ε∗д = ε̃д .

Proof outline. Since the profit is additively separable over д,
we consider each πд separately. For εд ≥ α/β , note profit is always
negative. And for εд ≤

αд−1
βд

, demand is increasing as εд increases,
which can be seen by checking the derivative. Then if profits are
positive, αд−1

βд
≤ ε∗д ≤ αд/βд . Thus either ε∗ is one of those end

points, or ε∗ satisfies the first order condition ε∗д = εд : ∂π
∂εд

|εд= 0,
as in Lemma 4.3, and thus ε∗д = ε̃д .

Moreover, if the maximum profit is positive, it must be attained
with ε∗д ≤ αд/βд , so it must be the case that the profit obtained at
ε̃д is positive, and vice versa.

□

B CONSUMER MODELS
In this section, we show how natural models of consumer behavior
give rise to the demand functions we assumed for our analysis.

B.1 Linear Demand
First, consider the following interaction between one firm and a
representative user: The firm sets its error levels; the user uses the
service if they will receive an accurate answer with probability
higher than some threshold corresponding to their outside option
(i.e. the payoff they would get if they decide not to use the service).
While the user knows her outside option, the firm does not; a

standard approach is to assume the firm makes decisions as if
the user’s outside option were drawn from a distribution. If this
distribution is uniform over some interval, then there is a linear
relationship between choice of error and probability (from the firm’s
perspective) of the user choosing to use the service (and thus the
firm’s expected revenue). If the firm interacts with many users, and
these threshold are uniform throughout the population, then this
representative interaction captures the aggregate interaction the
firm faces.

We formalize the interaction as follows: A firm provides a service
to a user wishing to answer some query. If the response is accurate,
the user receives a payoff of 1; otherwise, 0. The firm’s worst-case
error rate ε is known to the user, and the user chooses whether or
not to use the firm’s service based on their expected utility under
the worst-case error. The user has some parameter, τ , describing
their payoff from choosing not to use the service. This parameter
is drawn from the uniform distribution over [

¯
τ , τ̄ ], that describes

their outside option distribution.
To see the correspondence between this model and linear de-

mand, we claim that any linear demand function D(ε) := α − βε
can be mapped to the probability that a user uses the service under
some particular choice [

¯
τ , τ̄ ]. Formally:

Proposition B.1. For any linear demand function D(ε) = α − βε ,
there exists a uniform outside option model with choice

¯
τ = 1 − α

β ,

τ̄ = 1 + 1−α
β that justifies it.

Proof. To see this, first note that the user will use the service
if and only if the expected payoff is less than his outside option.
Since the user receives a payoff of 1 if the service answers correctly
and 0 if it answers incorrectly, the expected payoff is merely 1 ∗

Pr[correct] + 0 ∗ Pr[incorrect] = 1 − ε . Hence, the user will use
the service if and only if 1 − ε ≥ τ . Now, since the user’s outside
option is, from the Firm’s perspective, a uniform random variable,
the probability that the user will use the service, as a function of ε ,
can be written as:

Pr[user uses](ε) = Prτ∼U [α,β ][ε < 1 − τ ]

= Prτ∼U [α,β ][τ < 1 − ε]

=
1 − ε −

¯
τ

τ̄ −
¯
τ
=

1 −
¯
τ

τ̄ −
¯
τ
−

ε

τ̄ −
¯
τ
.

Letting α =
1−

¯
τ

τ̄−
¯
τ , β =

1
τ̄−

¯
τ and solving for τ̄ and

¯
τ yields the

claim. □

Notice that the truth of the claim is a matter of algebra and holds
even beyond sensible choices for α and β . That is, choosing α > 1
would still map to a plausible instance of linear demand, but α > 1
would not be sensible as the intercept for a linear probability model.
Finally, notice that the simple case of α = 1, β = 1 corresponds to
the uniform random variable over [0, 1].

B.2 Proportional Split
Consider the following Markov chain representing plausible user
behavior in the presence of competition: at any time t , a user who
is currently using Firm i stays with Firm i into time t + 1 if the firm
does not make a mistake; otherwise, the user switches to Firm j
with probability α and leaves the market with probability 1 − α . A
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user outside the market re-enters it with probability β , and then
chooses uniformly from the firms.

The steady state distribution of this Markov chain solves the
following equations:

µ1 = (1 − ε1)µ1 + αε2µ2 +
β

2
µ3

µ2 = αε1µ1 + (1 − ε2)µ2 +
β

2
µ3

µ3 = (1 − α)ε1µ1 + (1 − α)ε2µ2 + (1 − β)µ3.

Viewing the firm’s market share as the proportion of times the user
chooses the firm over a long enough horizon (or over many enough
consumers) yields a correspondence between the market share and
the stationary distribution. The form of this correspondence follows
from the following lemma:

Lemma B.2. Firm i’s market share under this Markov process is
given by

µi =
εj

εi + εj + τεiεj
.

where τ = 2 1−α
β .

Proof. We first the original three equations characterizing the
steady state distribution as:

µ1 =
1
ε1

[
αε2µ2 +

β

2
µ3

]
µ2 =

1
ε2

[
αε1µ1 +

β

2
µ3

]
µ3 =

1 − α

β
[ε1µ1 + ε2µ2] .

Solving the first two equations for µ3 and setting equal to each
other requires that

2ε1
β

[µ1 − α
ε2
ε2
µ2] =

2ε2
β

[µ2 − α
ε2
ε2
µ1] =⇒ ε1µ1 = ε2µ2.

Substituting this into the first rewritten equation for µ3 gives that

µ3 =
1 − α

β
2ε1µ1.

Finally applying the constraint that µ1 + µ2 + µ3 = 1 implies that

µ1 +
ε1
ε2
µ1 + 2ε1

1 − α

β
µ1 = 1 =⇒ µ1 =

1
1 + ε1

ε2
+ 2 1−α

β ε1
.

Now, we can reparameterize 2 1−α
β as τ , and apply the symmetric

logic to the other firm to obtain the general result:

µi =
εj

εi + εj + τεiεj
.

Thus, viewing the market share of Firm i as its share of the station-
ary distribution gives the result claimed. □

Notice that the case ofα = 1 recovers the case inwhich firms split
the complete market, and we can again consider integral competi-
tion exponents as requiring ρ mistakes in a row before switching.
In this paper, we only consider the case in which α = 1.

B.3 Fully Rational Demand
The Bertrand model of competition considers firms competing on
price with fully rational consumers. These consumers will always
pick the firm with (even infinitesimally) lower price. It is known
that a Nash equilibrium exists when firms have identical constant
marginal costs in quantity and can produce an unlimited quantity.
In that case, firms set equilibrium price equal to marginal cost
(that is, the lowest price that firms could charge without losing
money). We modify the Bertrand model to apply to our setting.
Firms do not set prices in our model; instead, they change error
rates. This is not a perfect analogy – changing error rates is itself
costly – but captures the spirit of the Bertrand model. However,
as we show in this section, equilibrium need not exist in the fully
rational model (just as a pure-strategy equilibrium need not exist
in canonical Bertrand competition when firms face non-constant
marginal costs).

Informally, we say that demand is fully rational, or Bertrand-like,
if firms with the minimum error capture the entire market (with
ties broken by splitting the market equally).

Definition B.3 (Fully Rational Demand). In a multi-firmmar-
ket, we say that demand is fully rational if

Dдi (ε) =


1 εдi < min

j,i
εдj

1∑
j 1[εд j=min

k
εдk ]

εдi = min
j,i

εдj

0 εдi > min
j,i

εдj

.

A proposition we will show is that there is no equilibrium in
pure strategies when considering this fully-rational demand.

Proposition B.4. The game induced by fully rational demands
as described in Definition B.3 has no equilibrium in pure strategies
whenever cдi <

µд
2 ∀i for some group д.

Proof. Suppose there existed such an equilibrium. Consider
a single group and let (ε∗дi , ε

∗
дj ) be the putative equilibrium error

choices. Note that these correspond to equilibrium choices of data
(M∗

дi ,M
∗
дj ). We claim that a profitable deviation will exist regardless

of what these choices are. There are two cases: in the first, firms
have different errors, while in the second, firms have the same error.
If firms have different errors, without loss of generality suppose
that ε∗дi < ε∗дj . Then Firm i receives µд −γдi/ε

q
дi −ϕдi , while Firm j

attains zero revenue. But notice that Firm i can unilaterally deviate
to ε ′ ∈ (ε∗дi , ε

∗
дj ) and capture the full market while paying less, thus

improving profits. Hence, we cannot have an equilibrium when
firms are choosing different error rates. On the other hand, suppose
firms are choosing the same error rates, that is, ε∗дi = ε∗дj . Now, we

can link ε∗дi to M∗
дi via ε

∗
дi =

(dH+log 1
δ )

(M∗
дi )

1
q

. In this case, each firm is

earning µд
2 −cдM

∗
дk−ϕдk . Consider Firm i buying an additional data

point, i.e.M ′
дi = M∗

дi + 1.Then because worst-case error guarantees
are strictly decreasing in the number of datapoints purchased, we
must have that ε ′дi < ε∗дi , and thus the firm deviating toM ′

дi would
capture the whole market at a cost of cдi (M∗

дi + 1). This deviation



FAT* ’20, January 27–30, 2020, Barcelona, Spain Hadi Elzayn and Benjamin Fish

will be profitable if

µд − cдi (M
∗
дi + 1) >

µд

2
− cдiM

∗
дi ⇐⇒

µд

2
> cдi .

Thus if cдi <
µд
2 ∀i , (ε∗дi , ε∗дj ) cannot be an equilibrium. □

A natural way to relax full rationality is to allow consumers
to be rational up to a point. That is, above some threshold ξ , they
can perfectly discriminate between error rates, and always will
choose the firm with (even infinitesimally) smaller error. But below
ξ , increasing accuracy does not materially improve their utility of
the project, and rather than attempt to ferret out small differences,
they pick randomly among firms with error below ξ . This leads to
our ξ -tolerant rational demand as discussed in Section 5.3.

C OMITTED PROOFS FROM SECTION 5
Remainder of Proof of Lemma 5.7. The profit of playing ε∗дi

given that j chooses ε∗дj is

πдi (ε
∗
дi , ε

∗
дj ) =

µдγ
2
дj

(γдi + γдj )2
− ϕдi .

On the other hand, if the firm chooses εдi = 1, its profit can be
upper bounded as:

πдi (1, ε∗дj ) ≤ µд
(γдi + γдj )

2

γдi + (γдi + γдj )2
− ϕдi .

Hence, their difference is at least:

πдi (ε∗дi , ε
∗
д j ) − πдi (1, ε∗д j ) =≥ µд

[
γ 2
д j

(γдi + γд j )2
−

(γдi + γд j )2

γдi + (γд j + γдi )2

]
.

Thus, a sufficient condition that πдi (ε∗дi , ε
∗
дj ) ≥ πдi (1, ε∗дj ) is:

(γдi + γдj )
2

γдi + (γдi + γдj )2
<

γ 2
дj

(γдi + γдj )2
.

This is true if and only if:

(γдi + γдj )
4 < γ 2

дj
[
γдi + (γдi + γдj )

2] . (5)

On the other hand, to ensure that ε∗дj is a best-response to ε
∗
дi , we

carry out the symmetric logic for Firm j. This will require that

(γдi + γдj )
4 < γ 2

дi [γдj + (γдi + γдj )
2]. (6)

Both inequalities must be satisfied if our purported equilibrium
is to be truly an equilibrium. Characterizing possible simultane-
ous solutions to Inequalities 5 and 6 is tedious, so instead we note
that it suffices to ensure mink γдk ≥ 12(maxk γдk )2; to avoid en-
cumbering the current argument, we defer the proof of this fact to
Appendix C.0.1. These are not the only solutions conditions that
satisfy Inequality 5, but they are sufficient conditions convenient
to write down.

Finally, note that equilibrium profits are positive if πдi (ε∗дi , ε
∗
дj ) ≥

0; this is true whenever

µдγ
2
дj

(γдi + γдj )2
≥ ϕдi , (7)

i.e. fixed costs are not extremely large.

Thus, (ε∗дi , ε
∗
дj ) satisfy these three conditions- Inequality, 5, In-

equality 6, and Inequality 7 - and ε∗дi < 1; hence (ε∗дi , ε
∗
дj ) is truly

an interior equilibrium.
To identify conditions in which this equilibrium is unique, we

need to eliminate the possible equilibrium in which both firms
choose ε = 1. Thus, we must show that there exists a choice εдi
such that:

πдi (εдi , 1) > πдi (1, 1);

that is, if one firm chooses εд = 1, and so abandons hope of serving a
good model to groupд, we want to show that there is always a more
profitable choice for the other firm than also giving up on them.
One possibility, though not necessarily the optimal one, is that
the other firm could choose εдi = ε∗дi , i.e. the interior equilibrium
choice we found above. This being more profitable is asking that
πдi (ε

∗
дi , 1) − πдi (1, 1) > 0. But this requires:

µд
1

1 + (γдi+γд j )2
γд j

− ϕдi − γдi > µд
1
2
− ϕдi − γдi

. This is true if and only if γд j
γд j+(γдi+γд j )2

> 1
2 . So notice that a

sufficient condition is γд j
2 > (γдi + γдj )

2. Similar logic applies to
j’s perspective.

Hence, if we have (γдi +γдj )2 < 1
2 min{γдi ,γдj }, both firms will

not stop investing in Group д even if the other were to unilaterally
deviate to do so. Thus, this non-exiting condition will be satisfied
for both firms if

(2 max
k

γдk )
2 ≤

1
2

min
k

γдk ⇐⇒ min
k

(γдk ) > 8(max
k

γдk )
2.

This condition is weaker than Inequality 9. In the case that γдi =
γдj = γ , this is asking that γ2 > (2γ )2 ⇐⇒ γ < 1

8 .
Thus, if mink γдk ≥ (maxk γдk )2, then the interior equilibrium

is the unique equilibrium.
□

C.0.1 Technical Lemma for Simple Tullock Case. We now supply
the missing algebra from Lemma C.1:

Lemma C.1 (Technical Lemma). The inequalities:

(γдi + γдj )
4 < γ 2

дj
[
γдi + (γдi + γдj )

2] ,
(γдi + γдj )

4 < γ 2
дi

[
γдj + (γдi + γдj )

2]
(inequalities 5 and 6) will be satisfied ifmink γдk ≥ 12(maxk γдk )2.

In the symmetric case, then γд ≤ 1
12 .

Proof. The set we are interested in is the intersection of two
solution sets to polynomial equations, and is hard to characterize
precisely; however, we can give sufficient conditions on γдi ,γдj so
that both inequalities are simultaneously satisfied.

We begin with the symmetric case, where γдi = γдj = γ , as it is
easy to see: this is asking that

24γ 4 < γ 3 + 22γ 2γ 2 ⇐⇒ 12γ 4 < γ 3 ⇐⇒ γ <
1
12
. (8)

If, instead, γдi , γдj , then we need to examine the algebra
more carefully. We claim that the if max

k
γk <

1
16 and min

k
γдk >

(max
k

γдk )
2 will suffice.
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To see this, note that Inequality 5 expanded out is:

0 < γ 2
дj (γдi + (γдj + γдi )

2) − (γдi + γдj )
4

= γ 2
дjγдi + γ

2
дj (γ

2
дi + γ

2
дj + 2γдiγдj )

− (γ 4
дi + 4γ 3

дiγдj + 6γ 2
дiγ

2
дj + 4γдiγ 3

дj + γ
4
дj )

= γ 2
дjγдi + γ

2
дjγ

2
дi + γ

4
дj + 2γдiγ 3

дj

− γ 4
дi − 4γ 3

дjγдj − 6γ 2
дiγ

2
дj − 4γдiγ 3

дj − γ 4
дj

= γ 2
дjγдi − 5γ 2

дjγ
2
дi − 2γдiγ 3

дj − γ 4
дi − 4γ 3

дiγдj .

Now, notice that by replacing whichever of γдi or γдj with the
larger of the two, we make the negative terms larger. So a sufficient
(though again, not necessary) condition for the inequality to be
satisfied is:

γ 2
дjγдi ≥ 12(max

k
γдk )

4,

But now notice that this is asking that either

(max
k

γдk )
2 min

k
γдk ≥ 12(max

k
γдk )

4,

or

(min
k

γдk )
2 max

k
γдk ≥ 12(max

k
γдk )

4, (9)

depending on whether γдj > γдj or vice versa. Since we can repeat
the logic from equilibrium from Firm j’s perspective, wewill actually
need both these conditions to hold for this point to be an equilibrium.
But since maxдk γдk < 1, it is sufficient that

min
k

γдk ≥ 12(max
k

γдk )
2,

which is simply asking that the firms are not too far apart in their
marginal costs. □

C.0.2 Proof of General Tullock case. Our goal is to show the fol-
lowing:

Lemma C.2. Suppose two firms compete for proportional demand
with parameters q and ρ. Suppose further that ε∗дi < 1 for all д and
i . If the nondeviation condition (as defined below) holds, then both
firms playing (ε∗дi , ε

∗
дj ) is an equilibrium

ε∗дi =

(
qγдi

ρдµд

) 1
q (γ

q
дi + γ

q
дj )

2
q

γ
q
дiγ

q
дj

=

(
q

ρдµд

) 1
q (γ

q
дi + γ

q
дj )

2
q

γ
1− 1

q
дi γ

q
дj

.

If, furthermore, the investment condition (as defined below) holds,
then this equilibrium is unique.

Proof. Under the proportional split model of demand, each
firm’s profit depends not only on its own action, but also that of
the other firm. Again, this calls for a game theoretic notion of
solution. We look for a pure strategy Nash Equilibrium. Recall that
in an equilibrium, both firms must be best-responding and have no
incentive to deviate.

To find an equilibrium, we first find the best-response of Firm i ,
given the choices of Firm j. Fixing εj , the profit of Firm i given the
choice of ε is as follows:

π (εi , εj ) =
∑
д∈G

µд
ε
ρд
дj

ε
ρд
дi + ε

ρд
дj

 −
∑
д∈G

ϕдi +
γдi

ε
q
дi
.

Taking the derivative:

∂π

∂εдi
= −µдε

ρд
дj (ε

ρд
дi + ε

ρд
дj )

−2
(
ρдε

ρд−1
дi

)
+
qγдi

ε
q+1
дi

.

Setting to zero yields the first-order condition:

qγдi

ε
q+1
дi

=
ρдµдε

ρд−1
дi ε

ρд
дj

(ε
ρд
дi + ε

ρд
дj )

2
=⇒

ρдµдε
ρд+q
дi ε

ρд
дj

qγдi
= (ε

ρд
дi + ε

ρд
дj )

2.

Applying symmetric logic to Firm j and using the fact that the
first order condition for each firm must hold simultaneously in
equilibrium, we have that

ρдµд
(
ε∗дi

)ρд+q (
ε∗дj

)ρд
qγдi

=
ρдµд

(
ε∗дj

)ρд+q (
ε∗дi

)ρд
qγдj

.

Solving for ε∗дj in terms of ε∗дi yields:

ε∗дj = ε∗дi

(
γдj

γдi

) 1
q
.

Substituting this back in, we have that

ρдµд
(
ε∗дi

)ρд+q (
ε∗дi

)ρд (
γд j
γдi

) ρд
q

qγдi
=

©«
(
ε∗дi

)ρд
+

(
ε∗дi

)ρд (
γдj

γдi

) ρд
q ª®¬

2

=
(
ε∗дi

)2ρ ©«1 +
(
γдj

γдi

) ρд
q ª®¬

2

.

Solving and rearranging gives that

ε∗дi =


qγдi

ρдµд

(
γдi

γдj

) ρд
q ©«1 +

(
γдj

γдi

) ρд
q ª®¬

2
1
q

=


qγдi

ρдµд

(
γдi

γдj

) ρд
q ©«

γ

ρд
q

дi + γ

ρд
q

дj

γ

ρд
q

дi

ª®®®¬
2

1
q

=


qγдi

ρдµд

(
γдi

γдj

) ρд
q 1

γ

2ρд
q

дi

(
γ

ρд
q

дi + γ

ρд
q

дj

)2


1
q

=


q

ρдµд

(
γ

ρд
q

дi + γ

ρд
q

дj

)2

γ

ρд
q

дi γ

ρд
q

дj



1
q

.
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Now, notice that the profit can be written as

πдi (ε∗дi , ε
∗
д j ) =

(
q

ρд µд

) 1
q (γ qдi+γ

q
д j )

2
q

γ
1− 1

q
дi γ qд j(

q
ρд µд

) 1
q (γ qдi+γ

q
д j )

2
q

γ
1− 1

q
д j γ qдi

+
(

q
ρд µд

) 1
q (γ qдi+γ

q
д j )

2
q

γ
1− 1

q
дi γ qд j

−
γдi(
ε∗дi

)q

=

©« 1

γ
1−

ρд
q

дi γ qд j

ª®®¬
ρ

©« 1

γ
1−

ρд
q

дi γ qд j

ª®®¬
ρ

+
©« 1

γ
1−

ρд
q

д j γ qдi

ª®®¬
ρ −

γдi(
ε∗дi

)q

=
1

1 +

[
γ

1−ρд /q
д j γ qдi

γ
1−ρд /q
дi γ qд j

]ρд −
γдi(
ε∗дi

)q
=

1

1 +

[
γ

1−ρд /q−q
д j

γ
1−ρд /q−q
дi

]ρд −
γдi(
ε∗дi

)q .

Substituting back in
(
ε∗дi

)q
, it is:

1

1 +

[
γ

1−ρд /q−q
д j

γ
1−ρд /q−q
дi

]ρд −
γдiρдµдγ

ρд
q

дi γ

ρд
q

дj

q

(
γ

ρд
q

дi + γ

ρд
q

дj

)2 .

For this interior equilibrium to hold, it must be thatπ∗
дi (ε

∗
дi , ε

∗
дj ) ≥

π∗
дi (ε

′, ε∗дj ) for all other choices ε
′. Note that πдi,ε∗д j (ε) is contin-

uous away from 0. Moreover, for small enough ε , πдi,ε∗д j (ε) < 0,
since the market size is bounded by costs can be come arbitrarily
negative. Hence, we can consider maximizing this function on the
compact set [ε0, 1], where ε0 is the point at which profit becomes
negative. Since πдi,ε∗д j (ε) is continuous on this set, and ε∗дi satisfies
the first-order condition, the only possible maxima of this function
are ε0 or 1. At ε0, the firm is making zero profits, so any choice with
positive profits eliminates it. At ε = 1, the firm can also choose to
not invest anything in data (and receive the same revenue but no
data costs), so the condition that makes πдi,ε∗д j (ε

∗
дi ) > πдi,ε∗д j (1)

will be sufficient to make this an equilibrium.
This condition holds if

1

1 +

[
γ

1−ρд /q−q
д j

γ
1−ρд /q−q
дi

]ρд −
γдiρдµдγ

ρд
q

дi γ

ρд
q

дj

q

(
γ

ρд
q

дi + γ

ρд
q

дj

)2 ≥ πдi (1, εдj∗ ). (10)

We call Inequality 10 the nondeviation condition. We can write:

πдi (1, εдj∗ ) =

(
q

ρд µд

) 1
q (γ qдi+γ

q
д j )

2
q

γ
1− 1

q
дi γ qд j

1 +
(

q
ρд µд

) 1
q (γ qдi+γ

q
д j )

2
q

γ
1− 1

q
дi γ qд j

=
1

1 +
(

q
ρд µд

)− 1
q (γ qдi+γ

q
д j )

−2
q

γ
1
q −1
дi γ −q

д j

,

so Inequality 10 asks that

1

1 +

[
γ

1−ρд /q−q
д j

γ
1−ρд /q−q
дi

]ρд −
γдiρдµдγ

ρд
q

дi γ

ρд
q

дj

q

(
γ

ρд
q

дi + γ

ρд
q

дj

)2

≥
1

1 +
(

q
ρд µд

)− 1
q (γ qдi+γ

q
д j )

−2
q

γ
1
q −1
дi γ −q

д j

.

We have shown that if the nondeviation condition holds for
each group and each firm, then (ε∗дi , ε

∗
дj ) is a Nash Equilibrium in

pure strategies under proportionally split demand with competi-
tion exponent ρд in each group and learning rate q. If a further
condition holds, namely that there exists a preferred strategy to
non-investment if the opponent invests, then the equilibrium is
unique.

Call this the investment condition: there exists ε ∈ (0, 1) such
that:

1
ε
ρ
д + 1

−
γдi

εq
>

µд

2
⇐⇒ εq − γдi (ε

ρд + 1) ≥
µд ((ε

ρд + 1)εq )
2

.

(11)

Equivalently, we need to ensure that there is an ε ∈ (0, 1) such that:

⇐⇒ εq − γдi (ε
ρд + 1) −

µд ((ε
ρд + 1)εq )

2
≥ 0 (12)

has a solution in (0, 1). This will not always be the case, of course;
when it is not, then there is an equilibrium in which both firms
prefer not to invest in collecting data from one group at all, which
certainly exacerbates inequality. □

D OMITTED PROOFS FROM SECTION 6.1
Omitted Algebra for Optimal Profit. Recall that we would

like to show that the optimal profit achievable by the monopolist
facing parameters µд ,αд , βд ,γд for д in G = {A,B} is:

π∗(ε∗) =
∑

д∈{A,B }

µдαд − (µдβд)
q
q+1γ

1
q+1
д Q .

For clarity, write ηд for µдβд . Then we can write the optimal
profit for a group as a function of the parameters using the result
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that the profit optimizing choice of error is ε∗д = (qγд/ηд)
1/(q+1).

π∗
д (µд ,γд ,αд , βд) = αдµд − ηдε

∗
д − γ/ε∗д

q

= αдµд − ηдη
− 1
q+1

д q
1

q+1γ
1

q+1
д − γд

(
ηд

qγд

) q
q+1

= αдµд − η
q
q+1
д γ

1
q+1
д q

1
q+1 − γ

1
q+1
д

1
qq/(q+1) η

q
q+1
д

= αдµд − η
q
q+1
д γ

1
q+1
д

[
q

1
q+1 +

1
qq/(q+1)

]
.

Then writing Q = q
1

q+1 + 1
qq/(q+1) , substituting back µдβд for ηд ,

and summing over groups yields the claim. □

Proof of Lemma 6.3. Fix a solution (εA, εB ) to the constrained
profit optimization problem. We will show that unless εB = (1 +
χ )εA, (εA, εB ) is not a constrained profit maximizer.

Since by assumption εMB > εMA (1 + χ ) but εA/(1 + χ ) ≤ εB ≤

(1 + χ )εA, we can’t have both εMB = εB and εMA = εA. Without loss
of generality, assume that εMB , εB .

There are three cases. In the first case, εMB > (1 + χ )εA. We
can increase the profit achieved by (εA, εB ) by increasing εB , as in
this case, εB < εMB . To see this, let εα =

(
εA,αε

M
B + (1 − α)εB

)
for

α ∈ [0, 1]. By Jensen’s inequality, there is an α such that

π (εα ) ≥ (1 − α)π ((εA, εB )) + απ
((
εA, ε

M
B

))
> π ((εA, εB )).

The first inequality holds for any α ∈ [0, 1], so we set α so that
εα = (εA, (1 + χ )εA), in which case this is still a feasible solution,
and by the separability of the profit function, the second inequality
holds.

In the second case, εMB < εA/(1 + χ ). Then by the same logic
using Jensen’s inequality, we can increase the profit by decreasing
εB to εA/(1 + χ ), i.e. π ((εA, εB )) < π ((εA, εA/(1 + χ ))). But we can
increase the profit even more in this case because εMA < εMB /(1 +
χ ) < εA/(1 + χ )2, so now we can decrease εA to see that profit is
maximized at

(
εA/(1 + χ )2, εA/(1 + χ )

)
.

Otherwise, εA/(1 + χ ) ≤ εMB ≤ (1 + χ )εA. This is very similar to
the previous case: Jensen’s inequality along with the separability
of π shows that π ((εA, εB )) < π

((
εA, ε

M
B

))
≤

(
εMB /(1 + χ ), εMB

)
.
□

Proof of Corollary 6.5. First, we show that εRA ≥ εMA :(
εRA

εMA

)q+1

=
q (γA + γB/(1 + χ )q ) /(µAβA + µBβB (1 + χ ))

qγA/(µAβA)

=
µAβA

µAβA + µBβB (1 + χ )

γA + γB/(1 + χ )q

γA

=
µAβAγA + µAβAγB/(1 + χ )q

µAβAγA + µBβBγA(1 + χ )
.

Notice that

εRA

εMA
≥ 1 ⇐⇒

(
εRA

εMA

)q+1

≥ 1.

Now using the elementary fact that for positive x ,y, z, (x +y)/(x +
z) ≥ 1 ⇐⇒ y ≥ z, we can see that(

εRA

εMA

)q+1

≥ 1 ⇐⇒ µAβAγB/(1 + χ )q ≥ µBβBγA(1 + χ )

⇐⇒
γB

µBβB
≥

γA
µAβA

(1 + χ )q+1.

But recalling that themonopolist’s optimal solution is εMд = (
qγд
µд βд

)
1

q+1 ,
we can rewrite the previous inequality as

εMB
q+1

≥ εMA
q+1

(1 + χ )q+1 ⇐⇒ εMB ≥ εMA (1 + χ ),

which is exactly Assumption 6.1.
Now, we show that εRB ≤ εMB :

εRB = (1 + χ )εRA =

(
q
((1 + χ )q+1γA + γB (1 + χ ))

µAβA + µBβB (1 + χ )

) 1
q+1
.

Then (
εRB

εMB

)q+1

= q
γA(1 + χ )q+1 + γB (1 + χ )

µAβA + µBβB (1 + χ )

µBβB
qγB

=
µBβBγA(1 + χ )q+1 + µBβB (1 + χ )γB

γAµAβA + µBβBγB (1 + χ )
.

So again using the elementary fact that y+xz+x ⇐⇒ y < z, we have:(
εRB

εMB

)q+1

≤ 1 ⇐⇒ µBβBγB (1 + χ ) ≤ µAβAγA

⇐⇒
γB
µBγB

≥
γA

µAβA
(1 + χ )q+1

⇐⇒ εMB
q+1

≥ εMA
q+1

(1 + χ )q+1

⇐⇒ εMB ≥ εMA (1 + χ ).

□

Proof of Corollary 6.6. Returning to the second equation in
the proof of Corollary 6.5 :(

PoF1+χ
)q+1

=
µAβA

µAβA + µBβB (1 + χ )

γA + γB/(1 + χ )q

γA

≤
γA + γB/(1 + χ )q

γA
.

Taking the (q + 1)th-root yields the claim. □

Proposition 6.9. We can write

MonPoF1+χ =

µAαA + r µAαB −Qµ

q
q+1
A

β
q
q+1
A γ

1
q+1
A + r

q
q+1 β

q
q+1
B γ

1
q+1
B


µAαA + r µAαB −Qµ

q
q+1
A

[
(βA + r βB (1 + χ ))

q
q+1 (γA + γB

1
(1+χ )

q
)

1
q+1

]

Factoring out µA and using the fact that if µB → ∞, µA → ∞, we
have:

lim
µB→∞

MonPoF1+χ = lim
µA→∞

MonPoF1+χ

= lim
µA→∞

αA + rαB −Qµ
− 1
q+1

A

β
q
q+1
A γ

1
q+1
A + r

q
q+1 β

q
q+1
B γ

1
q+1
B


αA + rαB −Qµ

− 1
q+1

A

[
(βA + r βB (1 + χ ))

q
q+1 (γA + γB

1
(1+χ )

q
)

1
q+1

]
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But then

lim
µB→∞

MonPoF1+χ = 1,

since µ−1/(q+1)
A → 0 as µA → ∞ and its multipliers are constants.

For the second claim, we can simply substitute in µB = 0 and
factor out µAαA to get

lim
µB→0

MonPoF =
µAαA[1 −Q

(
γA

µAαA

) 1
q+1

]

µAαA[1 −Q

(
γA+γB/(1+χ )

1
q+1

µAαA

) 1
q+1

]

=
[1 −Q

(
γA

µAαA

) 1
q+1

]

1 −Q

[
γA+γB/(1+χ )

1
q+1

µAαA

] 1
q+1

=
1 −Q/qεMA

1 −Q/qεMA

(
1 + γB

γA
1

(1+χ )
1

q+1

) 1
q+1
.

□

E OMITTED PROOFS FROM SECTION 6.2
Proof of Lemma 6.11. First, note that the absolute error con-

straints are separable, so that the firm’s profit maximization prob-
lem is simply maxεд πд(εд) subject to εд ≤ χ , for each ofд ∈ {A,B}.
So fix a group д ∈ {A,B}. If εRд , εMд , it must be that εMд > χ , as
otherwise the constraint would have already been met by εMд . Now
we show that for any feasible error rate εд ≤ χ , πд(εд) ≤ πд(χ )
with equality holding only at εд = χ . So suppose that εд < χ .

Let εд,α = (1 − α)εд + αε
M
д for α ∈ [0, 1]. Since πд is concave,

Jensen’s inequality implies that

πд(εд,α ) = πд
(
(1 − α)εд + αε

M
д

)
≥ (1 − α)πд(εд) + απд

(
εMд

)
> πд(εд),

with the second inequality holding when α > 0 because πд
(
εMд

)
>

πд(εд). Then choosing α =
χ−εд
εMд −εд

suffices as then εд,α = χ . (Notice

that χ−εд
εMд −εд

∈ (0, 1] since εMд > χ and χ > εд .)
□

Proof of Proposition 6.12. First, by Lemma 6.11, when χ <
εMA , then the optimal choice for the monopolist is (εRA, ε

R
B ) = (χ , χ ).

In this case, the profit is

π (χ , χ ) = µA(αA − βAχ ) + µB (αB − βB χ ) − ϕA − ϕB −
γA
χq

−
γB
χq
.

Since π is concave, the global optimum is at (εMA , ε
M
B ), and as the

error rate goes to zero, profit goes to negative infinity, there must
be a minimum error rate χ0 > 0 where the profit is zero. Since this

error rate must be smaller than εMA , the above formula for profit
holds and this error rate is the solution to

µA(αA − βAχ ) + µB (αB − βB χ ) − ϕA − ϕB −
γA
χq

−
γB
χq
= 0.

Multiplying by χq and re-arranging gives the claim. □

Proof of Corollary 6.15. For µB → ∞, note that we can write
the price of fairness as:

1 χ ≥ εMB
πA(εMA )+πB (εMB )

πA(εMA )+πB (χ )
εMA ≤ χ < εMB

πA(εMA )+πB (εMB )

πA(χ )+πB (χ )
χ0 < χ < εMA

∞ χ < χ0

.

Since εMA , ε
M
B → 0 as µB , µA → ∞, as the population grows, even-

tually εMB and εMA will be less than χ , so that εRB = εMB and εRA = εMA .
Thus limµB→∞MonPoFχ = 1.

For µB → 0, given our assumption on χ , we will be be in either
Case 1, Case 2, or Case 3. Note that as µB → 0, εMB will eventually
be larger than χ , so the limit will be obtained at either Case 2 or
Case 3. In Case 2, we can substitute in 0 for µB ; combining this
with the fact that for small enough µB , the optimal choice for the
unconstrained monopolist eventually becomes to set εMB = 1, we
can write the price of fairness as:

lim
µB→∞

MonPoFχ =
πA(ε

M
A ) − γB − ϕB

πA(εA)M − γB/χq − ϕB
≥ 1

=
µAαA −Qγ

1
q+1
A (µAβA)

q
q+1 − ϕA − γB − ϕB

µAαA −Qγ
1

q+1
A (µAβA)

q
q+1 − ϕA − γB/χq − ϕB

=

1 − γB−ϕB
1

q+1 (µAβA)
q
q+1 −ϕA

1 − γB/χq−ϕB
1

q+1 (µAβA)
q
q+1 −ϕA

≥ 1.

since χ ≤ 1 =⇒ γB/χ
q ≥ γB .

Alternatively, if Case 3 obtains, then we can write:

lim
µB→∞

MonPoFχ =
πA(χ ) − γB − ϕB

πA(χ ) − γB/χq − ϕB
≥ 1.

□
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