On the Computational Complexity of MapReduce

Ben Fish

) Joint work with
Jeremy Kun, Addm D. Lelkes, Lev Reyzin, and Gyorgy Turan

UIC
October 7th, 2015

Intro

» MRC: MapReduce as complexity class
» Upper bounds for MRC
» Hierarchy theorem for MRC

Why complexity theory?

» Can answer whether more resources gives more power

» Containments between complexity classes solve lots of
problems at once

» NP-hardness is evidence of a lack of a poly-time algorithm

MapReduce example

Input

“Now! Now!
Have no fear.”

“Have no fear!
said the cat.”

“My tricks are

not bad,” said

the Cat in the
Hat.

Shuffle

Map & Reduce Output
Sort

Mapper

Reducer

adjectives)

Reducer

Mapper

MapReduce - map, reduce functions

» Reducer ~ processor

» Mapper ~ which processor to send a given bit string

Definition (Slightly more formally)
Mapper 1 : (k,v) = (ki vi), ..., (kS ve)

Reducer p: k, (vi,...,Vm) = (v{,..., V)

Definition (MRC machine)
An MRC machine on R rounds is a list of alternating mappers and
reducers Mg = (11, p1, - - - Ry PR)-

Converting MapReduce into a decision problem framework

Recall every decision problem (yes/no answers) has an associated
language L of strings corresponding with the yes answers of the
decision problem.

Definition

An MRC machine Mg accepts a string if the reducers in the last
round accept the string and decides a language L if x € L iff M

accepts x.

Accept/
Reject x

Mappers

MRC

Definition (MRC, informal, from Karloff et al. 2010)

A language L is in MRC[f(n), g(n)] if there is an MRC machine
Mg = (p1, p1, - - -, R, pPr) that decides L and constant ¢ < 1 such
that for an input of size n,

. R=0(f(n))

. Each mapper and reducer takes O(g(n)) time

[y

. Each mapper and reducer takes O(n°) space
. Each mapper outputs no more than O(n€) distinct keys

B~ N

Definition

MRC? := |] MRCL, n*].
keN

Upper bounds

Theorem
SPACE(o(log n)) € MRC®.
Theorem (Warm-up)
REGULAR C MRC°

Example

Checking whether a string contains a given regular expression is in
MRCP.

Proof idea for upper bounds

Input: 000 101 010
pr P2 P3

finish

Proof idea for upper bounds

Input: 000 101 010
P P2 pP3

1 0 P3
finish

Proof idea for upper bounds

Input: 000 101 010
pr P2 P3

finish

Proof idea for upper bounds

Input: 000 101 010
P P2 P3

1 0 P3
finish
Sb

Proof idea for upper bounds

Input: 000 101 010
P P2 P3

1 0 P3
finish
Sb

Proof idea for upper bounds

Input: 000 101 010
P P2 pP3

P3

finish
Sp

Proof idea for upper bounds

Input: 000 101 010
P P2 P3

1 0 P3
finish
Sb

Proof idea for upper bounds

Input: 000 101 010
P P2 pP3

3
finish
Sa Sp
Sp Sc

Proof idea for upper bounds

Input: 000 101 010

w0 101 010
P P2 P3
1 0
0 0
S OBORO
1 1

P3

finish

Sa Sp
Sp Sc
Sc Sc

Proof idea for upper bounds

Input: 000 101 010

D e U g
pr P2 P3
P1 P2 P3
start | finish start | finish start | finish
S, Sc Sa Sa Sa Sb
Sp Sc Sp Sa Sp Sc
Sc Sc Sc Sh Sc Sc

Proof idea for upper bounds

Input: 000 101 010

D e U g
pr P2 P3
P1 P2 P3
start | finish start | finish start | finish
Sa Sc Sa Sa Sa Sb
Sp Sc Sp Sa Sp Sc
Sc Sc Sc Sp Sc Sc

Second round:

OmOROm0

Extension to sub-logarithmic space

Theorem
SPACE(o(log n)) € MRCC.

» Instead of simulating a DFA, we need to simulate a TM with
a read-only input tape and a read/write work tape.

» Again, each processor computes, for all input states, what
state the TM ends up in
» Now a ‘state’ consists of:
» Work tape configuration (2°(°€") . o(log n) configurations)
» TM state (constant number of states)
» Side of the input chunk the read head starts on (left/right)

Hierarchy theorem

Theorem
Suppose the Exponential Time Hypothesis holds. Then for every
«, B there exist ;. > « and v > 3 such that

MRC[n%, n°] € MRC[n*, n”]

and
MRC[n%, n°] € MRC[n®, n"].

“Sufficiently more rounds or time per round gives you strictly more
power."

ETH

Conjecture (Exponential Time Hypothesis, Impagliazzo,
Paturi, and Zane)

3-SAT is not in TIME(2") for some ¢ > 0.

Hierarchy proof via TISP

TISP(f(n),g(n)) is the class of languages solvable on a Turing
machine using f(n) time and g(n) space.

Lemma
For every a, B € N the following holds:

TISP(n®, n) € MRC[n®,1] C MRC[n®, n®] C TISP(n®+F*2 n?).

The proof of the hierarchy theorem comes from the above and a
padding/simulation argument to move the hardness guaranteed by
ETH into the appropriate MRC class.

Summary (Assuming the ETH holds)
P

Legend

——— strict subset

—_— subset MRC[pO/y(n)3 pO/}/(n)]

- = = infinite hierarchy // ,' AN ..

0 ,' o .
SPACE(o(log n)) MRC[1, n"] MRC[n®, 1] MRC[n, nf]
MRC[L, "] MRC[n®, 1]
MRC[1, n'/?]

e

REGULAR MRCJ1, 1]

Open Problems

> Is it possible to remove the dependence on the ETH?
» Where does SPACE(log(n)) lie?

» Is (undirected) graph connectivity in MRC®?

» Does MRC|poly(n), poly(n)] = P?

Corollary

SPACE(log(n)) C TISP(poly(n),log n) C TISP(poly(n), n)
C MRCJpoly(n), 1] € MRC[poly(n), poly(n)] C P.

	Introduction
	MapReduce

