On the Computational Complexity of MapReduce

Ben Fish

Joint work with Jeremy Kun, Ádám D. Lelkes, Lev Reyzin, and György Turán

> UIC October 7th, 2015

Intro

MRC: MapReduce as complexity class

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Upper bounds for MRC
- Hierarchy theorem for MRC

Why complexity theory?

- Can answer whether more resources gives more power
- Containments between complexity classes solve lots of problems at once
- NP-hardness is evidence of a lack of a poly-time algorithm

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

MapReduce example

Nernerner en 1980

MapReduce - map, reduce functions

- Reducer ~ processor
- Mapper \sim which processor to send a given bit string

Definition (Slightly more formally) Mapper $\mu : \langle k, v \rangle \rightarrow \langle k'_1, v'_1 \rangle, \dots, \langle k'_s, v'_s \rangle$ Reducer $\rho : k, \langle v_1, \dots, v_m \rangle \rightarrow \langle v'_1, \dots, v'_m \rangle$

Definition (MRC machine)

An MRC machine on R rounds is a list of alternating mappers and reducers $M_R = (\mu_1, \rho_1, \dots, \mu_R, \rho_R)$.

Converting MapReduce into a decision problem framework

Recall every decision problem (yes/no answers) has an associated language L of strings corresponding with the yes answers of the decision problem.

Definition

An MRC machine M_R accepts a string if the reducers in the last round accept the string and *decides* a language L if $x \in L$ iff M accepts x.

MRC

Definition (MRC, informal, from Karloff et al. 2010)

A language L is in MRC[f(n), g(n)] if there is an MRC machine $M_R = (\mu_1, \rho_1, \dots, \mu_R, \rho_R)$ that decides L and constant c < 1 such that for an input of size n,

- 1. R = O(f(n))
- 2. Each mapper and reducer takes O(g(n)) time
- 3. Each mapper and reducer takes $O(n^c)$ space
- 4. Each mapper outputs no more than $O(n^c)$ distinct keys

Definition

$$\mathsf{MRC}^0 := \bigcup_{k \in \mathbb{N}} \mathsf{MRC}[1, n^k].$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Upper bounds

Theorem SPACE($o(\log n)$) \subseteq MRC⁰.

Theorem (Warm-up) REGULAR \subsetneq MRC⁰

Example

Checking whether a string contains a given regular expression is in $\ensuremath{\mathsf{MRC}}^0.$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 의 < ⊙ < ⊙

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 의 < ⊙ < ⊙

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − 釣へで

▲□ > ▲□ > ▲ 三 > ▲ 三 > ● ④ < ④

Input:
$$\begin{array}{c|c} 000 & 101 & 010 \\ \hline \rho_1 & \rho_2 & \rho_3 \end{array}$$

$ ho_1$		$ ho_2$			$ ho_3$		
start	finish	start	finish		start	finish	
Sa	S _C	Sa	Sa		Sa	s _b	
s _b	S _C	s _b	Sa		s _b	S _C	
S _C	S _C	S _C	s _b		S _C	S _C	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Sa

Input:
$$\begin{array}{c|c} 000 & 101 & 010 \\ \hline \rho_1 & \rho_2 & \rho_3 \end{array}$$

$ ho_1$		$ ho_2$			$ ho_3$		
start	finish	start	finish		start	finish	
Sa	S _C	 Sa	Sa		Sa	s _b	
s _b	S _C	s _b	Sa		s _b	S _C	
S _C	S _C	S _C	s _b		S _C	S _C	

Second round: ρ_1 ρ_2 ρ_3 ρ_3

 $\left(s_{c} \right)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Extension to sub-logarithmic space

Theorem SPACE($o(\log n)$) \subseteq MRC⁰.

- Instead of simulating a DFA, we need to simulate a TM with a read-only input tape and a read/write work tape.
- Again, each processor computes, for all input states, what state the TM ends up in
- Now a 'state' consists of:
 - Work tape configuration $(2^{o(\log n)} \cdot o(\log n) \text{ configurations})$
 - TM state (constant number of states)
 - Side of the input chunk the read head starts on (left/right)

Hierarchy theorem

Theorem

Suppose the Exponential Time Hypothesis holds. Then for every α, β there exist $\mu > \alpha$ and $\nu > \beta$ such that

$$\mathsf{MRC}[\mathbf{n}^{\alpha},\mathbf{n}^{\beta}] \subsetneq \mathsf{MRC}[\mathbf{n}^{\mu},\mathbf{n}^{\beta}]$$

and

$$\mathsf{MRC}[\mathbf{n}^{\alpha},\mathbf{n}^{\beta}] \subsetneq \mathsf{MRC}[\mathbf{n}^{\alpha},\mathbf{n}^{\nu}].$$

"Sufficiently more rounds or time per round gives you strictly more power."

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conjecture (Exponential Time Hypothesis, Impagliazzo, Paturi, and Zane) 3-SAT is not in TIME(2^{cn}) for some c > 0.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Hierarchy proof via TISP

TISP(f(n), g(n)) is the class of languages solvable on a Turing machine using f(n) time and g(n) space.

Lemma

For every $\alpha, \beta \in \mathbb{N}$ the following holds:

 $\mathsf{TISP}(n^{\alpha}, n) \subseteq \mathsf{MRC}[n^{\alpha}, 1] \subseteq \mathsf{MRC}[n^{\alpha}, n^{\beta}] \subseteq \mathsf{TISP}(n^{\alpha+\beta+2}, n^2).$

The proof of the hierarchy theorem comes from the above and a padding/simulation argument to move the hardness guaranteed by ETH into the appropriate MRC class.

Open Problems

- Is it possible to remove the dependence on the ETH?
- ▶ Where does SPACE(log(*n*)) lie?
- Is (undirected) graph connectivity in MRC⁰?
- Does MRC[poly(n), poly(n)] = P?

Corollary

 $\begin{aligned} \mathsf{SPACE}(\mathsf{log}(n)) &\subseteq \mathsf{TISP}(\mathsf{poly}(n), \mathsf{log}\,n) &\subseteq \mathsf{TISP}(\mathsf{poly}(n), n) \\ &\subseteq \mathsf{MRC}[\mathsf{poly}(n), 1] \subseteq \mathsf{MRC}[\mathsf{poly}(n), \mathsf{poly}(n)] \subseteq \mathsf{P}. \end{aligned}$