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Intro

I MRC: MapReduce as complexity class

I Upper bounds for MRC

I Hierarchy theorem for MRC



Why complexity theory?

I Can answer whether more resources gives more power

I Containments between complexity classes solve lots of
problems at once

I NP-hardness is evidence of a lack of a poly-time algorithm



MapReduce example

“My tricks are 
not bad,” said 
the Cat in the 

Hat.

“Now!  Now!  
Have no fear.”

“Have no fear! 
said the cat.”
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In: 1
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MapReduce - map, reduce functions

I Reducer ∼ processor

I Mapper ∼ which processor to send a given bit string

Definition (Slightly more formally)

Mapper µ : 〈k, v〉 → 〈k ′1, v ′1〉, . . . , 〈k ′s , v ′s〉
Reducer ρ : k, 〈v1, . . . , vm〉 → 〈v ′1, . . . , v ′m〉

Definition (MRC machine)

An MRC machine on R rounds is a list of alternating mappers and
reducers MR = (µ1, ρ1, . . . , µR , ρR).



Converting MapReduce into a decision problem framework

Recall every decision problem (yes/no answers) has an associated
language L of strings corresponding with the yes answers of the
decision problem.

Definition
An MRC machine MR accepts a string if the reducers in the last
round accept the string and decides a language L if x ∈ L iff M
accepts x .

Input
x Mappers Reducers Accept/

Reject x



MRC

Definition (MRC, informal, from Karloff et al. 2010)

A language L is in MRC[f (n), g(n)] if there is an MRC machine
MR = (µ1, ρ1, . . . , µR , ρR) that decides L and constant c < 1 such
that for an input of size n,

1. R = O(f (n))

2. Each mapper and reducer takes O(g(n)) time

3. Each mapper and reducer takes O(nc) space

4. Each mapper outputs no more than O(nc) distinct keys

Definition

MRC0 :=
⋃
k∈N

MRC[1, nk ].



Upper bounds

Theorem
SPACE(o(log n)) ⊆ MRC0.

Theorem (Warm-up)

REGULAR ( MRC0

Example

Checking whether a string contains a given regular expression is in
MRC0.



Proof idea for upper bounds
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Extension to sub-logarithmic space

Theorem
SPACE(o(log n)) ⊆ MRC0.

I Instead of simulating a DFA, we need to simulate a TM with
a read-only input tape and a read/write work tape.

I Again, each processor computes, for all input states, what
state the TM ends up in

I Now a ‘state’ consists of:
I Work tape configuration (2o(log n) · o(log n) configurations)
I TM state (constant number of states)
I Side of the input chunk the read head starts on (left/right)



Hierarchy theorem

Theorem
Suppose the Exponential Time Hypothesis holds. Then for every
α, β there exist µ > α and ν > β such that

MRC[nα, nβ] ( MRC[nµ, nβ]

and
MRC[nα, nβ] ( MRC[nα, nν ].

“Sufficiently more rounds or time per round gives you strictly more
power.”



ETH

Conjecture (Exponential Time Hypothesis, Impagliazzo,
Paturi, and Zane)

3-SAT is not in TIME(2cn) for some c > 0.



Hierarchy proof via TISP

TISP(f (n), g(n)) is the class of languages solvable on a Turing
machine using f (n) time and g(n) space.

Lemma
For every α, β ∈ N the following holds:

TISP(nα, n) ⊆ MRC[nα, 1] ⊆ MRC[nα, nβ] ⊆ TISP(nα+β+2, n2).

The proof of the hierarchy theorem comes from the above and a
padding/simulation argument to move the hardness guaranteed by
ETH into the appropriate MRC class.



Summary (Assuming the ETH holds)

REGULAR MRC[1, 1]

MRC[1, n1/2]

MRC[1, nγ ]

MRC[1, nγ
′
]

MRC0

SPACE(o(log n))

MRC[nα, 1]

MRC[nα
′
, 1]

MRC[poly(n), poly(n)]

P

MRC[nα, nβ]

MRC[nα
′
, nβ

′
]

strict subset

subset

infinite hierarchy

Legend



Open Problems

I Is it possible to remove the dependence on the ETH?

I Where does SPACE(log(n)) lie?

I Is (undirected) graph connectivity in MRC0?

I Does MRC[poly(n), poly(n)] = P?

Corollary

SPACE(log(n)) ⊆ TISP(poly(n), log n) ⊆ TISP(poly(n), n)

⊆ MRC[poly(n), 1] ⊆ MRC[poly(n), poly(n)] ⊆ P.
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