
On the Computational Complexity of MapReduce

Ben Fish

Joint work with
Jeremy Kun, Ádám D. Lelkes, Lev Reyzin, and György Turán

UIC
October 7th, 2015

Intro

I MRC: MapReduce as complexity class

I Upper bounds for MRC

I Hierarchy theorem for MRC

Why complexity theory?

I Can answer whether more resources gives more power

I Containments between complexity classes solve lots of
problems at once

I NP-hardness is evidence of a lack of a poly-time algorithm

MapReduce example

“My tricks are
not bad,” said
the Cat in the

Hat.

“Now! Now!
Have no fear.”

“Have no fear!
said the cat.”

Mapper

Mapper

Mapper

Reducer
(Nouns/verbs/

adjectives)

Reducer
(Other)

Fear: 2
Cat: 2

Have: 2
Said: 2

Tricks: 1
Are: 1
Bad: 1
Hat: 1

The: 3
Now: 2
No: 2
My: 1
Not: 1
In: 1

Input Map Reduce Output
Shuffle

&
Sort

MapReduce - map, reduce functions

I Reducer ∼ processor

I Mapper ∼ which processor to send a given bit string

Definition (Slightly more formally)

Mapper µ : 〈k, v〉 → 〈k ′1, v ′1〉, . . . , 〈k ′s , v ′s〉
Reducer ρ : k, 〈v1, . . . , vm〉 → 〈v ′1, . . . , v ′m〉

Definition (MRC machine)

An MRC machine on R rounds is a list of alternating mappers and
reducers MR = (µ1, ρ1, . . . , µR , ρR).

Converting MapReduce into a decision problem framework

Recall every decision problem (yes/no answers) has an associated
language L of strings corresponding with the yes answers of the
decision problem.

Definition
An MRC machine MR accepts a string if the reducers in the last
round accept the string and decides a language L if x ∈ L iff M
accepts x .

Input
x Mappers Reducers Accept/

Reject x

MRC

Definition (MRC, informal, from Karloff et al. 2010)

A language L is in MRC[f (n), g(n)] if there is an MRC machine
MR = (µ1, ρ1, . . . , µR , ρR) that decides L and constant c < 1 such
that for an input of size n,

1. R = O(f (n))

2. Each mapper and reducer takes O(g(n)) time

3. Each mapper and reducer takes O(nc) space

4. Each mapper outputs no more than O(nc) distinct keys

Definition

MRC0 :=
⋃
k∈N

MRC[1, nk].

Upper bounds

Theorem
SPACE(o(log n)) ⊆ MRC0.

Theorem (Warm-up)

REGULAR (MRC0

Example

Checking whether a string contains a given regular expression is in
MRC0.

Proof idea for upper bounds

000
ρ1

Input: 101
ρ2

010
ρ3

sastart scsb

1

0

1

0

0

1

ρ3

start finish
sa

sb

sb

sc

sc

sc

Proof idea for upper bounds

000
ρ1

Input: 101
ρ2

010
ρ3

sastart scsb

1

0

1

0

0

1

ρ3

start finish
sa

sb

sb

sc

sc

sc

Proof idea for upper bounds

000
ρ1

Input: 101
ρ2

010
ρ3

sastart scsb

1

0

1

0

0

1

ρ3

start finish
sa

sb

sb

sc

sc

sc

Proof idea for upper bounds

000
ρ1

Input: 101
ρ2

010
ρ3

sastart scsb

1

0

1

0

0

1

ρ3

start finish
sa sb
sb

sc

sc

sc

Proof idea for upper bounds

000
ρ1

Input: 101
ρ2

010
ρ3

sastart scsb

1

0

1

0

0

1

ρ3

start finish
sa sb
sb

sc

sc

sc

Proof idea for upper bounds

000
ρ1

Input: 101
ρ2

010
ρ3

sastart scsb

1

0

1

0

0

1

ρ3

start finish
sa sb
sb

sc

sc

sc

Proof idea for upper bounds

000
ρ1

Input: 101
ρ2

010
ρ3

sastart scsb

1

0

1

0

0

1

ρ3

start finish
sa sb
sb

sc

sc

sc

Proof idea for upper bounds

000
ρ1

Input: 101
ρ2

010
ρ3

sastart scsb

1

0

1

0

0

1

ρ3

start finish
sa sb
sb sc
sc

sc

Proof idea for upper bounds

000
ρ1

Input: 101
ρ2

010
ρ3

sastart scsb

1

0

1

0

0

1

ρ3

start finish
sa sb
sb sc
sc sc

Proof idea for upper bounds

000
ρ1

Input: 101
ρ2

010
ρ3

ρ1

start finish
sa sc
sb sc
sc sc

ρ2

start finish
sa sa
sb sa
sc sb

ρ3

start finish
sa sb
sb sc
sc sc

Second round:

sa sc sb sc
ρ1 ρ2 ρ3

Proof idea for upper bounds

000
ρ1

Input: 101
ρ2

010
ρ3

ρ1

start finish
sa sc
sb sc
sc sc

ρ2

start finish
sa sa
sb sa
sc sb

ρ3

start finish
sa sb
sb sc
sc sc

Second round:

sa sc sb sc
ρ1 ρ2 ρ3

Extension to sub-logarithmic space

Theorem
SPACE(o(log n)) ⊆ MRC0.

I Instead of simulating a DFA, we need to simulate a TM with
a read-only input tape and a read/write work tape.

I Again, each processor computes, for all input states, what
state the TM ends up in

I Now a ‘state’ consists of:
I Work tape configuration (2o(log n) · o(log n) configurations)
I TM state (constant number of states)
I Side of the input chunk the read head starts on (left/right)

Hierarchy theorem

Theorem
Suppose the Exponential Time Hypothesis holds. Then for every
α, β there exist µ > α and ν > β such that

MRC[nα, nβ] (MRC[nµ, nβ]

and
MRC[nα, nβ] (MRC[nα, nν].

“Sufficiently more rounds or time per round gives you strictly more
power.”

ETH

Conjecture (Exponential Time Hypothesis, Impagliazzo,
Paturi, and Zane)

3-SAT is not in TIME(2cn) for some c > 0.

Hierarchy proof via TISP

TISP(f (n), g(n)) is the class of languages solvable on a Turing
machine using f (n) time and g(n) space.

Lemma
For every α, β ∈ N the following holds:

TISP(nα, n) ⊆ MRC[nα, 1] ⊆ MRC[nα, nβ] ⊆ TISP(nα+β+2, n2).

The proof of the hierarchy theorem comes from the above and a
padding/simulation argument to move the hardness guaranteed by
ETH into the appropriate MRC class.

Summary (Assuming the ETH holds)

REGULAR MRC[1, 1]

MRC[1, n1/2]

MRC[1, nγ]

MRC[1, nγ
′
]

MRC0

SPACE(o(log n))

MRC[nα, 1]

MRC[nα
′
, 1]

MRC[poly(n), poly(n)]

P

MRC[nα, nβ]

MRC[nα
′
, nβ

′
]

strict subset

subset

infinite hierarchy

Legend

Open Problems

I Is it possible to remove the dependence on the ETH?

I Where does SPACE(log(n)) lie?

I Is (undirected) graph connectivity in MRC0?

I Does MRC[poly(n), poly(n)] = P?

Corollary

SPACE(log(n)) ⊆ TISP(poly(n), log n) ⊆ TISP(poly(n), n)

⊆ MRC[poly(n), 1] ⊆ MRC[poly(n), poly(n)] ⊆ P.

	Introduction
	MapReduce

